
Sampling User Executions for Bug Isolation

Ben Liblit Alex Aiken Alice X. Zheng Michael I. Jordan
{liblit,aiken,alicez,jordan}@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720-1776

1. Introduction

Many computer scientists think of a program as either
correct (i.e. it meets some specification) or incorrect (i.e. it
does not meet some specification). But industrial software
development is as much about economics as computer sci-
ence. Software quality is a monetary balancing act among
engineers’ salaries, time to market, user expectations, and
other business concerns. We ship software when it seems
correct enough to neither embarrass us nor alienate users.
We ship software with known bugs that are not worth fix-
ing, and users uncover new bugs that we never imagined.

Practitioners clearly need something other than a
Boolean notion of correctness, but such a notion has been
difficult to quantify. In-house testing can only guess at field
usage patterns, and poor guesses can leave users in bad
shape. An obscure, low-priority bug that was difficult to re-
produce in the testing lab may turn out to affect large num-
bers of users on a regular basis. Technical support channels
provide one way for post-deployment feedback to reach en-
gineers, but traditionally these mechanisms have been in-
formal and overly dependent on human intervention.

Widespread Internet connectivity makes possible a radi-
cal change to this situation. For the first time it is feasible to
directly observe the reality of a software system’s deploy-
ment. Through sheer numbers, the user community brings
far more resources to bear on exercising a piece of software
than could possibly be provided by the software’s authors.
Coupled with an instrumentation and reporting infrastruc-
ture, these users can potentially replace guesswork with real
triage, directing scarce engineering resources to those areas
that benefit the most people.

2. Distributed Bug Hunting

Of the many ways in which remote software monitoring
can be used, our particular interest is in bug hunting tools.
Industry critics have said that many software vendors treat
their customers like beta testers. If that is so, then we are not

yet using these thousands or millions of testers as effectively
as we could. Traditionally, most software failures produce a
grumpy user and no diagnostic feedback, which benefits no
one. Recently, automatic crash reporting systems have cre-
ated the reverse problem: developers who are overwhelmed
with bug reports, many of which may be redundant, and
who must prioritize their work in terms of which bug fixes
are likely to provide the greatest net benefit in the shortest
amount of time.

As of this writing, the Bugzilla bug tracking database for
the open source Mozilla web browser project shows 36,937
open bugs; an additional 60,191 have been marked as dupli-
cates of bugs already reported [6]. Mozilla augments man-
ual bug reporting with an automated crash feedback system.
This system currently shows 2974 automated crash reports
over a ten day period, accounting for 12,799 hours of “test-
ing” by end users [7]. Microsoft’s Watson error reporting
service has collected crash reports from half a million sepa-
rate programs. Experience with Watson has shown that one
percent of software errors cause fifty percent of user crashes
[5].

This high level of redundancy suggests that there is great
potential to harness the user community as a distributed,
brute force bug hunting resource. Because the most impor-
tant bugs are those that happen most often to the most users,
it is not necessary to trace program behavior in a complete,
invasive, perfectly controlled manner. Rather, we can use
lightweight instrumentation to sample a small amount of in-
formation about each run, and then merge this information
to form an aggregate picture of how the software is working
and failing in the field. Furthermore, the feedback loop can
flow in both directions: aggregate error reporting can direct
engineers toward bugs, and engineers can steer instrumenta-
tion toward code regions of interest based on observed fail-
ure trends.

Any such system must solve several critical problems:

• If monitoring is to be continuous, any instrumentation
must be sufficiently lightweight that it has a negligible

mailto:liblit@cs.berkeley.edu
mailto:aiken@cs.berkeley.edu
mailto:alicez@cs.berkeley.edu
mailto:jordan@cs.berkeley.edu


impact on the performance of the user’s program.

• The data collection strategy must respect resource lim-
its in several domains, including client (user) stor-
age, server storage, and client-to-server network band-
width.

• Given some instrumentation plan, analysis of collected
data must draw probable conclusions from partial re-
sults, with progressively stronger inferences as more
feedback data accumulates over time. We should not
assume that we ever have complete information about
any single run, or that any two runs are truly identical.

In the sections that follow, we describe ongoing research
to address each of these areas. Section 3 describes a pro-
gram transformation that produces a fair, randomized subset
of some underlying instrumentation strategy. In Section 4
we couple sampled instrumentation with a statistical anal-
ysis based on logistic regression to isolate a buffer overrun
bug.

3. Fair Random Sampling

Given some set of interesting program behaviors, it is
impractical to observe all instances of these behaviors in
all runs at all times. In one pilot study, we instrumented
thebc command line calculator tool to trace the values of
all syntactic assignments while processing nine megabytes
of random input. An average run lasts less than five
seconds (discounting instrumentation overhead) and yields
over 250,000 assignment events. Using one word to iden-
tify the location of the assignment and a second word for its
value, this data rate would require two full T1 Internet links
(1.5 Mbps each) to stream just a single report to a feed-
back collection host. Even if traces were buffered locally,
the overhead imposed by such aggressive instrumentation
would impose an unacceptable performance penalty within
the running client application.

Instead, we sample a sparse subset of behavior in a sta-
tistically fair, randomized manner. Given a body of code,
with certain fragments designated as instrumentation, we
wish to execute the instrumentation fragments only a subset
of the times they are reached. With enough users, we can
build up a realistic aggregate view while keeping the sam-
pling density low enough that each individual user will ex-
perience only negligible instrumentation overhead. Further-
more, rather than reporting each sampled event individually,
we fold the continuous event stream down to a finite collec-
tion of event counters within the client application. These
counters represent a compact trace summary which can be
reported and analyzed following program completion.

Our strategy is similar to one used by Arnold and Ryder
for lightweight performance profiling [1], with refinements

to ensure that the samples are truly random in the sense of
a Bernoulli process: each instrumentation fragment has an
equal chance of being executed or not, and this decision is
made dynamically and independently at each instrumenta-
tion opportunity as the program executes.

Tossing a do/don’t sample coin at each instrumentation
site is too inefficient, since most instrumentation itself is
already quite lightweight. Instead, at program compilation
time, we identify acyclic regions in the control flow graph
of each function. At the top of any acyclic region, there can
be only a finite number of paths forward before we reach a
back edge. Each such path can have only a finite number of
instrumentation sites, and so the entire acyclic region has a
finite maximuminstrumentation weight.

At run time, we compute a sequence of random num-
bers in a geometric distribution. Geometrically distributed
numbers give theinter-arrival time for events in a Bernoulli
process; a geometric random sequence with mean 1000 tells
us how many instrumentation sites toskipbefore taking the
next sample for an overall sampling density of 1/1000.

Each geometrically distributed number, then, serves as
a countdown relative to the instrumentation weights com-
puted earlier. If the next sample countdown is 428, and we
reach the top of an acyclic region with maximum instru-
mentation weight of 5, then no sample will be taken on this
pass through the region. Instead of skipping over each in-
strumentation fragment individually, we jump directly into
a “fast” version of the code in which the instrumentation has
been removed entirely. All the fast code need do is decre-
ment the countdown based on the actual path taken. When
sampling is sparse, this is the common case, and so most ex-
ecution will incur no instrumentation overhead beyond top-
of-region counter checks and fast-path counter decrements.

Several opportunities exist for refining this sampling
framework, including interprocedural analyses to identify
larger acyclic regions and implementation strategies that
help the compiler further optimize countdown management
along the fast path. Additional details and preliminary ex-
perimental results have been published elsewhere [4].

4. Statistical Debugging

In this section we discuss one approach to using the in-
formation we collect to help isolate bugs that cause a pro-
gram to crash. The framework described above limits per-
client overhead, but captures only a sampled subset of be-
havior. Thus, while a crash is always observed, the violation
that caused it may not be. Instead of looking for strict im-
plications (assertion failed=⇒ crash), we are interested
in finding statistical trends: if some assertion tends to hold
when the program succeeds and tends to fail when the pro-
gram fails, then this is an important clue to help a human
programmer find, reproduce, and fix the bug.



Our approach injects instrumentation that guesses possi-
ble ordering relationships among pointer and integer vari-
ables in C programs, loosely in the style of Daikon [2].
At each direct scalar assignment “x = . . . ”, we identify all
same-typed variables{y1, y2, . . . , yn} which are simulta-
neously in scope. For each pair(x, yi), the compiler inserts
a set of three comparisons to determine whether the new
value assigned tox is less than, equal to, or greater thanyi.
Clearly these wild guesses will include many comparisons
among variables which are completely unrelated, or which
are always in some fixed relationship in all runs. However,
it may also capture important relationships which directly
relate to a bug. For example, an array bounds overrun ap-
pears as a pair of variables(index, max) for which index
is always less thanmax on successful runs, but for which
index is occasionally observed to be greater thanmax on
failed runs.

Recording the result of each and every ordering com-
parison would yield a stream of samples that grows rapidly
as the program executes and would exceed any reasonable
constraints on storage or network bandwidth. Instead, the
instrumentation maintains a triple of counters for each com-
parison site, and tabulates the number of timesx was ob-
served to be less than, equal to, or greater thanyi. Each
counter triple is considered as one sampling opportunity,
and is randomly updated or skipped dynamically and in-
dependently from each other site. This can be thought of
as a simple client-side analysis that applies summation as
a reduction operator across the sample stream for each site
and each ordering relation. When execution concludes, the
counter values are shipped up to the feedback server along
with a single binary outcome: failure or no failure. In a pilot
study, full instrumentation of thebc command line calcula-
tor tool used 30,150 counters (thirty two bits each) of which
just 2908 are “interesting” (non-zero in at least one run us-
ing 1/1000 sampling and 9MB random input). This much
data easily fits within modest storage and communication
resource limits.

Given hundreds or thousands of such runs, we borrow
techniques from statistical analysis to identify those coun-
ters whose values are strongly predictive of program fail-
ure. Our current approach useslogistic regression, a dis-
criminative binary classification method [3]. Whereas lin-
ear regression fits a straight line to input features, logistic re-
gression uses an S-shaped curve (the logistic function) that
asymptotically approaches zero at one extreme and one at
the other. In our case, zero corresponds to successful execu-
tion, one corresponds to failure, input features are sampled
counters, and the coefficient assigned to each feature weighs
the relative importance of that feature in predicting program
failure. The model is trained using stochastic gradient as-
cent to reach a local maximum of the log likelihood, with a
penalty factor based on the L1-norm of the feature weight

coefficients. We may have many more features than runs,
and most features are wild guesses and therefore irrelevant.
The penalty factor exerts a downward pressure forcing most
feature weights to zero, leaving us with a small number of
highly relevant predictors.

Our initial experience with the system is quite encour-
aging. We simulate a large user community by runningbc
with random input data. Nine megabytes of random input
crashesbc 1.06 roughly one time in four. Stack traces show
thatbc failed in a utility routine undermalloc(), suggest-
ing heap corruption. We use 2704 runs with density 1/1000
to train the L1-regularized logistic regression model. The
top five ranked features (those with the largest coefficients)
form a group well-separated in magnitude from the rest. All
five of these strongly predictive features correspond to in-
strumentation on a single line within a single function out
of 8910 lines in the complete program. This line is the top
of a loop, the counters correspond to updates of the loop in-
dex, and the function itself is clearly performing nontrivial
memory management. Furthermore, these five features cor-
respond to “greater-than” counters, suggesting that failure
occurs when the loop index is unusually large. Inspection of
the suspect line quickly reveals that the loop uses the wrong
upper bound as it zeros out newly allocated elements of an
array, causing it to run past the last element and scribble
zeros into unmanaged memory.

One might hope that the specific invariant (that the index
never exceed the array length) would appear as a unique
strong predictor in the L1-regularized logistic regression
model. This feature does appear in the model, but ranked
240th rather than first. There may be several reasons for
this. Random noise is inherent to our methodology: both
sampling and model training use randomization. Even
crashing is not guaranteed: a C program may overrun some
buffer, scribble into memory which is not actually being
used, and therefore not crash. Lastly, there is a high de-
gree of redundancy among instrumentation sites, meaning
that the statistical model has several features to choose from
which have equivalent predictive power. Improving our in-
strumentation scheme and fine-tuning the statistical analysis
methodology are key areas for continued development.

The performance impact of sampled instrumentation is
quite reasonable. For a sampling density of 1/1000,bc
runs just 4.5% slower than it would with no instrumentation
at all. By contrast, unconditional instrumentation without
sampling incurs a penalty of over 390%. Thus, our sam-
pling strategy allows large-scale distributed data collection
that would be wholly impractical using naı̈ve full tracing.

Further details about our bug hunting experiment with
bc are reported elsewhere [4].



5. Open Problems

The techniques described here address challenges in
building a distributed bug isolation system. However, a
complete solution will require further study of additional
open problems. To note just a few:

Bug report bucketing is the challenge of identifying fail-
ure reports which represent multiple occurrences of the
same bug even before the bug itself has been found
and fixed. A good bucketing scheme is key to assign-
ing appropriate priorities, and is also a necessary basis
for any approach that exploits redundancy to aggregate
partial information from multiple failure reports. Clus-
tering algorithms from machine learning may be appli-
cable here.

Privacy and security are concerns with both social and
technological dimensions. It may be possible to ad-
dress some of the technological facets using techniques
drawn from secure information flow, which statically
identify sensitive data that should not be revealed to
outside observers [8]. Our statistical models afford a
degree of anonymity as well, as they combine many
runs into one aggregate from which individual samples
can no longer be recovered.

Adaptive refinement of instrumentation based on early re-
sults would allow us to focus in more quickly on tar-
geted bugs while deemphasizing code that is known
or believed to be uninvolved. Combining statistical
models with more conventional program analysis tech-
niques may allow us to make better initial instrumen-
tation plans and refine these plans more rapidly than
would either approach alone.

6. Conclusions

We have described a suite of instrumentation and analy-
sis techniques for diagnosing bugs in widely deployed soft-
ware. Bug isolation begins with continuous monitoring
based on fair, sparsely sampled instrumentation. Statistical
analysis based on L1-regularized logistic regression builds a
predictive model that identifies sampled features which are
highly predictive of subsequent program failure.

The strengths of the user community are twofold. First,
they have overwhelming numbers. Second, they represent
reality. All of our approaches are designed with the goal
of leveraging these strengths. A very large user commu-
nity means that random sampling can be sparse, which in
turn allows us to control performance overhead. Simple
reductions of the sampled data set on the client limit re-
source requirements, while still allowing statistical analysis
of aggregate behavior. The logistic regression model grows

progressively more accurate as it trains on more and more
data, and will naturally adapt to reflect the most common
failures. Redundant failure reports, therefore, are actually a
benefit as they allow bug triage to reflect real failure trends
seen by real users.

References

[1] M. Arnold and B. Ryder. A framework for reducing the cost
of instrumented code.ACM SIGPLAN Notices, 36(5):168–
179, May 2001.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution.IEEE Transactions on Software Engineer-
ing, 27(2):1–25, Feb. 2001.

[3] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of
Statistical Learning.Stats. Springer, 2001.

[4] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Dis-
tributed program sampling. InProceedings of the ACM SIG-
PLAN 2003 Conference on Programming Language Design
and Implementation, San Diego, California, June 9–11 2003.

[5] J. Markoff. Microsoft reports progress in averting computer
crashes.The New York Times, page C.7, Oct. 3 2002.

[6] Mozilla.org. Mozilla bug database.<http://bugzilla.
mozilla.org/>, Apr. 1 2003.

[7] Mozilla.org. Mozilla Talkback crash data.<ftp://ftp.
mozilla.org/pub/data/crash-data/>, Apr. 1 2003.

[8] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Un-
trusted hosts and confidentiality: Secure program partition-
ing. In Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles (SOSP’01), pages 1–14. Chateau Lake
Louise, Banff, Alberta, Canada, Oct. 2001. Appeared as ACM
Operating Systems Review 35.5.

http://bugzilla.mozilla.org/
http://bugzilla.mozilla.org/
ftp://ftp.mozilla.org/pub/data/crash-data/
ftp://ftp.mozilla.org/pub/data/crash-data/

	Introduction
	Distributed Bug Hunting
	Fair Random Sampling
	Statistical Debugging
	Open Problems
	Conclusions

