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Abstract

Taking inspiration from real-life friendship formation patterns, we propose a new generative model
of evolving social networks. Each person in the network has a distribution over social interaction
spheres, which we term “contexts.” The model allows for birth and death of links and addition of
new people. Model parameters are learned via Gibbs sampling, and results are demonstrated on
real social networks. We study the robustness of our model by examining statistical properties of
simulated networks, and compare against well-known properties of real social networks.
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1 Introduction
For decades, social scientists have been fascinated with the study of interpersonal relationship net-
works. Researchers in physics, statistics, and computer science have developed a parallel interest
in similar networks such as the World Wide Web, the Internet, and biochemical networks in the
cell. The field has taken on new significance in the public consciousness with the appearance of
large on-line communities. This is driving the need for models that are capable of encapsulating
dynamic social relations.

Two major schools of thought exist in social network modeling. One approach models the
network through regression on sufficient statistics of graph motifs such as dyads and triads [12].
These models are descriptive in nature and are often degenerate [4]. A radically different approach
comes from the random graph community, where generative models are designed to mimic large-
scale average behaviors such as the degree distribution [1, 10]. While random graphs are generated
dynamically, their links cannot be modified once established. This contradicts real-life behavior of
social links.

This paper marks what we believe to be the first step towards a fully generative statistical model
of weighted dynamic social networks. We strive for a model that is complex enough to incorporate
fundamental properties of social relations, yet simple enough for feasible parameter learning. We
focus on the evolution of interpersonal relationships over time, explicitly modeling the birth and
gradual decay of links. Our model generates realistic networks and provides a natural interpretation
of the underlying social dynamics. In comparison to previous work on latent space models [5, 11],
our model goes one step further by learning a parametrized generating function of the latent space.

Let us start with a motivating example. Imagine that Andy moves to a new town. He may find
new collaborators at work, make friends at parties, or meet fellow gym-goers while exercising. In
general, Andy lives in a number of different spheres of interaction or contexts. He may find himself
repeatedly meeting certain people in different contexts at different times, consequently developing
stronger bonds with them; acquaintances he never meets again may quickly fade away. Andy’s
new friends may also introduce him to their friends (a well-known transitive phenomenon called
triadic closures in social sciences [14]).

With this example in mind, we present our model in Section 2. We show how to learn the
parameters of our model using Gibbs sampling in Section 3. Experimental results are discussed in
Section 4 and Section 5 contains a brief survey of related work.

2 Dynamic Contextual Friendship Model (DCFM)

2.1 Notation
DCFM allows the addition of new people into the network at each time step. Let T denote the
total number of time steps and Nt the number of people at time t. N = NT denotes the final total
number of people. Let Mt denote the number of new people added to the network at time t, so that
Nt = Nt−1 + Mt.

Links between people are weighted. Let {W 1, . . . ,W T} be a sequence of weight matrices,
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where W t ∈ ZNt×Nt
+ represents the pairwise link weights at time t. We assume that W t is sym-

metric, though it can be easily generalized to the directed case.
The intuition behind our model is that friendships are formed in contexts. There are a fixed

number of contexts in the world, K, such as work, gym, restaurant, grocery store, etc. Each person
has a distribution over these contexts, which can be interpreted as the average percentage of time
that he spends in each context.

2.2 The Generative Process
At time t, the Nt people in the network each selects his current context Rt

i from a multinomial
distribution with parameter θi, where θi has a Dirichlet prior distribution:

~θi ∼ Dir(~α), ∀i = 1, . . . , N, (1)
Rt

i | θi ∼ Mult(θi), ∀t = 1, . . . , T, i = 1, . . . , Nt. (2)

The number of all possible pairwise meetings at time t is DYADt = {(i, j) | 1 ≤ i ≤ Nt, i <
j ≤ Nt} . For each pair of people i and j who are in the same context at time t (i.e., Rt

i = Rt
j), we

sample a Bernoulli random variable F t
ij with parameter βiβj . If F t

ij = 1, then i and j meets at time
t. The parameter βi may be interpreted as a measurement of friendliness and is a beta-distributed
random variable (making it possible for people to have different levels of friendliness):

βi ∼ Beta(a, b), ∀i = 1, . . . , N, (3)

F t
ij | Rt

i, R
t
j ∼

{
Ber(βiβj) if Rt

i = Rt
j

I0 o.w.
∀(i, j) ∈ DYADt, (4)

where I0 is the indicator function for F t
ij = 0.

In addition, the newcomers at time t have the opportunity to form triadic closures with existing
people. The probability that a newcomer j is introduced to existing person i is proportional to the
weight of the links between i and the people whom j meets in his context. Let TRIADt = {(i, j) |
1 ≤ i ≤ Nt−1, 1 ≤ j ≤ Mt} denote the pairs of possible triadic closures. For all (i, j) ∈ TRIADt,
we have:

Gt
ij | W t−1, F t

·j, R
t
· ∼

{
Ber(µt

ij) if Ri 6= Rj

I0 o.w.,
(5)

where µt
ij :=

∑Nt

`=1 W t−1
i` F t

`j/
∑t−1

`=1 W t−1
i` .

Connection weight updates are Poisson distributed. Our choice of a discrete distribution allows
for sparse weight matrices, which are often observed in the real world. Pairwise connection weights
may drop to zero if the pair have not interacted for a while (though nothing prevents the connection
from reappearing in the future). If i and j meets (F t

ij = 1 or Gt
ij = 1), then W t

ij has a Poisson
distribution with mean equal to a multiple (γh) of their old connection strength. γh signifies the rate
of weight increase as a result of the “effectiveness” of a meeting; if γh > 1, then the weight will
in general increase. (The weight may also decrease under the Poisson distribution, a consequence
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Figure 1: Graphical representation of one time step of the generative model. Rt is a Nt-dimensional
vector indicating each person’s context at time t. F t is a Nt×Nt matrix indicating pairwise dyadic
meetings. Gt is a Nt−1 × Mt matrix that indicate triadic closure for newcomers at time t. W t is
the matrix of observed connection weights at time t. θ, β, γh, and γ` are parameters of the model
(hyperparameters are not shown).

perhaps of unhappy meetings.) If i and j do not meet, their mean weight will decrease with rate
γ` < 1. Thus

W t
ij | W t−1

ij , F t
ij, G

t
ij, γh, γ` ∼

{
Poi(γh(W

t−1
ij + ε)) if F t

ij = 1 or Gt
ij = 1

Poi(γ`W
t−1
ij ) o.w.

(6)

where W t−1
ij = 0 by default for (i, j) /∈ TRIADt, and ε is a small positive constant that lifts the

Poisson mean away from zero. As W t−1
ij becomes large, γh and γ` control the increase and decrease

rates, and the effect of ε diminishes. γh and γ` have conjugate Gamma priors:

γh ∼ Gamma(ch, dh), (7)
γ` ∼ Gamma(c`, d`). (8)

Figure 1 contains a graphical representation of our model. The complete joint probability is:

P (~θ, ~β, γh, γ`, W
1:T , R1:T , F 1:T , G1:T ) =

P (~θ)P (~β)P (γh)P (γ`)
∏

t

P (Rt|~θ)P (F t|Rt, ~β)P (Gt|Rt, F t, W t−1)P (W t|Gt, F t, W t−1) (9)
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3 Learning Parameters via Gibbs Sampling
Our model utilizes O(N) parameters to represent the distribution of a sequence of T integer-valued
weight matrices each of size O(N2). (Note that the number of parameters does not depend on the
number of time steps.) There are also a number of hidden variables that indicate the underly-
ing pairwise interaction states: {Rt, F t, Gt}t=1...T . We use Gibbs sampling to sample from the
posterior distribution of these random variables given observed weight matrices {W 1, . . . ,W T}.1

3.1 Posterior Distributions of Parameters

~θi | . . . ∼ Dir(~α + ~α′
i), (10)

P (βi | . . .) ∝ βAi+a−1
i (1− βi)

b−1
∏
j 6=i

(1− βiβj)
Bij , (11)

γh | . . . ∼ Gamma(ch + wh, (vh + 1/dh)
−1), (12)

γ` | . . . ∼ Gamma(c` + w`, (v` + 1/d`)
−1). (13)

We use . . . as a shorthand for “all other variables in the model.” In Equation 10, α′
ik :=

∑T
t=1 I(Ri=k)

is the total number of times person i is seen in context k. In Equation 11, Ai := |{(j, t) | Rt
i =

Rt
j and F t

ij = 1}| is the total number of dyadic meetings between i and any other person, and
Bij := |{t | Rt

i = Rt
j and F t

ij = 0}| is the total number of times i has “missed” an opportunity
for a dyadic meeting. Let H := {(i, j, t) | F t

ij = 1 or Gij = 1} represent the union of the set
of dyadic and triadic meetings, and L := {(i, j, t) | (i, j) ∈ DYADt and F t

ij = 0} the set of
missed dyadic meeting opportunities. wh :=

∑
(i,j,t)∈H W t

ij is the sum of updated weights after the
meetings, and vh :=

∑
(i,j,t)∈H(W t−1

ij + ε) is the sum of the original weights plus a fixed constant.
wl :=

∑
(i,j,t)∈L W t

ij is the sum of weights after the missed meetings, and vl :=
∑

(i,j,t)∈L W t−1
ij is

the sum of original weights. (Here we use zero as the default value for W t−1
ij if j is not yet present

in the network at time t− 1.)
Due to coupling from the pairwise interaction terms βiβj , the posterior probability distribution

of βi cannot be written in a closed form. However, since βi lies in the range [0, 1], one can perform
coarse-scale numerical integration and sample from interpolated histograms. Alternatively, one
can design Metropolis-Hasting updates for βi, which has the advantage of maintaining a proper
Markov chain.

3.2 Posterior Distributions of Hidden Variables
The variables F t

ij and Gij are conditionally dependent given the observed weight matrices. If a
pairwise connection Wij increases from zero to a positive value at time t, then i and j must either
have a dyadic or a triadic meeting. On the other hand, dyadic meetings are possible only when i
and j are in the same context, and triadic meetings when they are in different contexts. Hence F t

ij

1Learning results do not seem to be sensitive to the values of hyperparameters. In our experiments, we set the
hyperparameters (~αi, a, b, ch, dh, c`, d`) to reasonable fixed values based on simulations of the model.
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and Gt
ij may never both be 1. In order to ensure consistency, F t

ij and Gij must be updated together.
For (i, j) ∈ TRIADt,

P (F t
ij = 1, Gij = 0 | . . .) ∝ I(Rt

i=Rt
j)
(βiβj)Poi(W t

ij; γhε),

P (F t
ij = 0, Gij = 1 | . . .) ∝ I(Rt

i 6=Rt
j)
µijPoi(W t

ij; γhε),

P (F t
ij = 0, Gij = 0 | . . .) ∝

[
I(Rt

i=Rt
j)
(1− βiβj) + I(Rt

i 6=Rt
j)
(1− µij)

]
I(W t

ij=0).

(14)

For (i, j) ∈ DYADt\TRIADt,

P (F t
ij = 1 | . . .) ∝ I(Rt

i=Rt
j)
(βiβj)Poi(W t

ij; γh(W
t−1
ij + ε)),

P (F t
ij = 0 | . . .) ∝ (I(Rt

i=Rt
j)
(1− βiβj) + I(Rt

i 6=Rt
j)
)Poi(W t

ij; γ`W
t−1
ij ).

(15)

There are also consistency constraints for Rt. For example, if F t
ij = F t

jk = 1, then i, j, and
k must all lie within the same context. If Gkl = 1 in addition, then l must belong to a different
context from i, j, and k. The F variables propagate transitivity constraints, whereas G propagates
exclusion constraints.

To update Rt, we first find connected components within F t. Let p denote the number of
components and I the index set for the nodes in the i-th component. We update each Rt

I as a
block. Imagine an auxiliary graph where nodes represent these connected components and edges
represent exclusion constraints specified by G, i.e., I is connected to J if Gij = 1 for some i ∈ I
and j ∈ J . Finding a consistent setting for Rt is equivalent to finding a feasible K-coloring of the
auxiliary graph, where K is the total number of contexts. We sample Rt

I sequentially according to
an arbitrary ordering of the components. Let π(I) denote the set of components that are updated
before I . The posterior probabilities are:

P (Rt
I = k|Rt

π(I), G) ∝

{
0 if GIJ = 1 and Rt

J = k for some J ∈ π(I)∏
i∈I θik o.w.

(16)

These sequential updates correspond to a greedy K-coloring algorithm; they are approximate Gibbs
sampling steps in the sense that they do not condition on the entire set of connected components.

4 Experiments
In this section we would like to address three points. First, we show that our Gibbs sampler is able
to recover the true parameters of simulated networks. Second, we present DCFM learning results
on a real co-authorship network. Finally, we give a brief overview of the range of the behaviors that
DCFM can simulate, and show that the model captures well-known properties of social networks
such as power law distribution of node degrees.

4.1 Parameter Learning Results
As a sanity check for our parameter learning algorithm, we apply it to a network generated from the
model. Overall we find that the learning procedure quickly converges to a stable set of parameter
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values. The hyperparameters are set to be those used in the simulation, however we find that Gibbs
is robust to changes in hyperparameters. Below are convergence plots for γh, γ` and β parameters
for a small dataset of 78 people in 10 contexts where links form and dissolve over 84 time steps.
The number of Gibbs iterations is 10, 000.

Figure 2 contains a scatter plot of the friendliness β parameters (mean of the posterior vs.
true values). Figure 3 contains the convergence plot and the posterior distribution of γh and γ`.
Note that, due to noise in the sampling process, the γh values oscillate around the median of 1.90
(true value being 2) and γ` values have median 0.96 (true value being 1). We observe similar
convergence trends for θi.

Figure 2: β parameter scatter plot.

To test the interpretability of the model on real data, we learn the parameters of DCFM on a
real-life collaboration network. We have collected interaction information, such as meetings and
co-authorships, over 13 years for 120 people connected to our lab. We omit the names of people
due to anonymity constraints. More information will be available in the full version of the paper.

Sampling results yield the median values of γh = 1 and γl = .02. This shows that lab members
either have steady collaboration patterns over time, or have spurious interactions that quickly die
off. We also find that the head of the lab, who participates in most but not all of the collaborations,
is quite friendly with β = .86. Interestingly, the next most friendly person with β = .82 is a student
who is not the most prolific but has many co-authors. In the process of parameter learning, we find
that our original assumption of 10 contexts is not enough to accommodate all the consistency
constraints arising between R, F , and G. Thus we increase the number of contexts to 20. Figure 4
shows the learned context distributions of the above mentioned professor and student. The two are
mostly comparable except for contexts 7, 8, and 17. Assuming that the contexts represent topics
of study, the student is the most interested in 7 and least in 17, whereas the professor has a rather
uniform distribution over all fields, most of all number 8.
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Figure 3: The left-hand column shows convergence plots of γh and γ` over Gibbs sampling itera-
tions. The right-hand column contains histogram of the sampled values.

Figure 4: Context distributions of the two most “friendly” people in the co-authorship network.
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We are currently in the process of collecting more learning results on larger simulated and real
networks.

4.2 Simulations and Reality
We study the range of behaviors of our model under different parameter settings using a set of
established metrics. Our goal is to see whether the model can capture behaviors that have been
observed in a variety of real networks. We find that DCFM can generate networks whose clustering
coefficient, average path length, and effective diameter fall within the range of observed values.
[1] and [10] present empirical measurements for a variety of real-life networks and give formal
definitions for the metrics used.

Unless otherwise specified, the number of contexts K is set to 10 in all our simulation experi-
ments. The context preference parameter θi is drawn from a peaked Dirichlet prior, where αk∗ = 5
for a randomly selected k∗, and αk = 1 otherwise, so that each person slightly prefers one of the
contexts. The friendliness parameter βi is drawn from a Beta(a, b) distribution, where a = 1 and
b varies. The weights update rates are γh = 2, γ` = 0.5, and ε = 1. We add one person to the
network at every time step, so that Nt = t and Mt = 1. All experiments are repeated with 10 trials.

4.2.1 Effects of Friendliness

The parameter βi determines the “friendliness” of the i-th person and is drawn from a Beta(a, b)
distribution. As b increases from 2 to 10, average friendliness decreases from 0.33 to 0.09. We wish
to test the effect of b on overall network properties. In order to isolate the effects of friendliness,
we fix the context assignments by setting Rt

i = R1
i for all t > 1. In this setting, people do not form

triadic closures, and connection weights are updated only through dyadic meetings. As people
become less friendly, one as expected observes a corresponding decrease in average node degree
(Figure 5, top left). Interestingly, the clustering coefficient goes up as friendliness goes down.
This is because low friendliness makes for smaller clusters, and it is easier for smaller clusters to
become densely connected. We also observe large variance in average path length and effective
diameter at low friendliness levels. This is due to the fact that most clusters now contain one to
two people. As small clusters become connected by chance, shortest path lengths varies from trial
to trial.

4.2.2 Degree distribution

Under different parameter settings, our model may generate networks with a variety of degree dis-
tributions. Lower levels of friendliness typically lead to more power-law-like degree distributions,
while higher levels often result in a heavier tail. In Figure 6, we show two degree distribution plots
for different friendliness levels. On the left (b = 3) the quadratic polynomial is a much better fit
to the degree distribution than the linear one. This means that, when people are more friendly, the
drop off in the number of people with high node degree is slower than would be expected under the
power law. We do observe the power law effect at a lower level of friendliness. In the right-hand
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Figure 5: Effects of the friendliness parameter on a network of 200 people with fixed contexts. The
x-axes represent different values of b in Beta(1, b).

side plot, the linear polynomial with coefficient −1.6 gives as good of a fit as a quadratic function.
This coefficient value lies well within the normally observed range for real social networks [1].

5 Related Work
The principles underlying the mechanisms by which relationships evolve are still not well under-
stood [9]. Current models aim at either describing observed phenomena or predicting future trends.
A common approach is to select a set of graph based features, such as degree distribution or the
number of dyads and triangles, and create models that mimic observed behavior of the evolution
of these features in real life networks. Works of [7, 2, 3] in physics and [13, 6] in social sciences
follow this approach. However, under models of average behavior, the actual links between any
two given people might not have any meaning. Consequently, these models are often difficult to
interpret.

Another approach aims to predict likely future friends and collaborators based on the properties
of the network seen so far [10, 9]. These models often have problems of scalability, and cannot
encode common network dynamics such as mobility and link modification. Moreover, these mod-
els usually do not take into account triadic closure, a phenomenon of great importance in social
networks [14, 8].

[11] presents an interesting dynamic social network model. This work builds on [5], which
introduces latent positions for each person in order to explain observed links. If two people are
close in the latent space, they are likely to have a connection. [5] estimate latent positions in a
static data set. [11] adds a dynamic component by allowing the latent positions to be updated
based on both their previous positions and on the newly observed interactions, One can imagine
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Figure 6: Log-log plot of the degree distributions of a network with 200 people. βi is drawn from
Beta(1, 3) for the plot on the left, and from Beta(1, 8) on the right. Solid lines represent a linear fit
and dashed lines quadratic fit to the data.

a generative mechanism that governs such perturbations of latent positions, though authors do not
offer one. The model of [11] assumed a fixed number of people in the network.

6 Discussion and Future Work
Researchers have long sought a learnable social network model built upon solid principles from
social science. In this paper, we propose a generative model for evolving friendship networks based
on the idea of social contexts. Our model adheres to real-life behavior of friendship networks
at the cost of increased complexity in the generating process. Despite its structural complexity,
the model is relatively parsimonious in the parameters, and parameter learning is possible via
Gibbs sampling. The learning algorithm scales on the order of O(N2T ), and we have performed
preliminary experiments on networks with as many as 600 people.

Our simulations commence the process of exploring the range behavior of this model, but we
have yet to systematically analyze the model for the type of behaviors it can and cannot emulate.
Another issue we have not touched upon in this paper is identifiability. We expect to answer these
questions and more in future work.
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