
Statistical Debugging: Simultaneous Identification of Multiple Bugs

Alice X. Zheng alicez@cs.cmu.edu

Carnegie Mellon University, School of Computer Science, Pittsburgh, PA

Michael I. Jordan jordan@cs.berkeley.edu

University of California, Berkeley, Department of EECS, Department of Statistics, Berkeley, CA

Ben Liblit liblit@cs.wisc.edu

Computer Sciences Department, University of Wisconsin-Madison, Madison, WI

Mayur Naik mhn@cs.stanford.edu
Alex Aiken aiken@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA

Abstract

We describe a statistical approach to soft-
ware debugging in the presence of multiple
bugs. Due to sparse sampling issues and com-
plex interaction between program predicates,
many generic off-the-shelf algorithms fail to
select useful bug predictors. Taking inspira-
tion from bi-clustering algorithms, we pro-
pose an iterative collective voting scheme for
the program runs and predicates. We demon-
strate successful debugging results on several
real world programs and a large debugging
benchmark suite.

1. Introduction

Traditional software debugging is an arduous task that
requires time, effort, and a good understanding of the
source code. Given the scale and complexity of the
task, the development of methods for automatically
debugging software seems both essential and very dif-
ficult. However, several trends make such an endeavor
increasingly realistic: (1) the wide-scale deployment
of software, (2) the establishment of distributed crash
report feedback systems, and (3) the development of
statistical machine learning algorithms that can take
advantage of aggregate data over multiple users.

The statistical approach to software debugging that
we pursue here is based on a fine-grained instrumen-

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

tation of software and a distributed data collection in-
frastructure (Liblit et al., 2003). The process starts
with a source-to-source transformation of a (presum-
ably) buggy C program. This transformation creates
a large number of instrumented sites that assess the
truth value of predicates over the run-time state of pro-
gram variables. Each time a given instrumentation site
is reached during program execution, the instrumenta-
tion code at the site is optionally executed, according
to a probability distribution that can be tuned to min-
imize the instrumentation’s impact on run-time per-
formance. If the code at a site is executed, we record
the true/false value of the corresponding predicate and
say that the predicate is observed. Otherwise, the pro-
gram skips the site and moves on (and the predicate
is unobserved). Feedback reports contain the counts
of the number of times each predicate is found to be
true during each run of the program. In addition, runs
are labeled as either successful or failing, depending on
the exit status of the program.

Since the instrumentation predicates are automatically
generated, most of them do not provide any useful
information about the locations of bugs. The pri-
mary problem of statistical debugging is thus to se-
lect the most useful bug-predicting predicates from a
set of user feedback reports. The sheer size of the
data sets involved can be problematic for some näıve
approaches. One of our test programs, for example,
contains 56K lines of code and 857K predicates, out
of which only a handful of predicates are useful bug
predictors. Large software programs contain millions
of lines of code and hundreds of millions of candidate
predicates for an algorithm to choose from.

Statistical Debugging: Simultaneous Identification of Multiple Bugs

Sparse sampling of predicates and the complexity of
their interactions further complicate the matter. In
the simple case of programs containing a single bug,
the automatic debugging problem can be posed as a
feature selection problem in the binary classification
context. Relatively straightforward, off-the-shelf tech-
niques work well in this case (Zheng et al., 2004). How-
ever, we have found that these algorithms fail when
applied to more realistic cases of programs containing
multiple bugs, because the algorithms have difficulty
coping with issues related to sampling and cannot dis-
tinguish between useful bug predictors and predicates
that are secondary manifestations of bugs.

In this paper, we attack the multi-bug problem. We
first identify some of the major challenges arising in
the multi-bug case that cause simple solutions to fail
in Section 2. We design a new algorithm that addresses
these challenges in Section 3. In Section 4, we present
results from experiments on real programs in which
our algorithm is able to identify known and previously
unknown bugs. We also compare our algorithm with
two other statistical debugging techniques on a suite
of 130 test programs. We conclude in Section 5.

2. Multi-Bug Challenges

In the multi-bug setting, we assume that a program
contains multiple bugs. Failing runs are of course not
labeled according to the bug that causes failure, and
thus the problem has somewhat of the flavor of a clus-
tering problem. There are some idiosyncrasies, how-
ever. Note that we have both failing runs and success-
ful runs, so the problem retains an aspect of classifica-
tion. Moreover, any given run can exhibit more than
one bug. Finally, and most importantly, our problem
is not simply identifying clusters, but finding features
that allow us to identify clusters and simultaneously
characterize failing versus successful runs. Thus the
problem is an instance of a feature selection problem,
but one that does not appear to have an off-the-shelf
solution.

In order to make these issues concrete, we briefly
present the results of applying several simple algo-
rithms to a realistic multi-bug problem. We do not
claim that the algorithms that we use here are in any
sense an effective choice; we use them simply to high-
light the issues that arise in the multi-bug setting.

Our testbed is MOSS, a software plagiarism detection
program with a large user community. We introduce
variations of nine bugs found in previous versions of
the software and generate runs of the program by vary-
ing command-line options and input files. As it turns

Table 1: Result of applying the single-bug algorithm
to the MOSS data.

Predicate

(p + passage_index)->last_line < 4
(p + passage_index)->first_line < i
i > 20
i > 26
(p + passage_index)->last_line < i
i > 23
(p + passage_index)->last_line == next
i > 22
i > 25
i > 28

out, bug #8 never manages to trigger any failed runs
and is thus ignored hereafter. Bug #1 causes incorrect
output; the rest of the bugs crash the program in var-
ious ways. We tag the failed runs by their exit error
signal, and compare their output against results from
a version of MOSS without bugs. Note also that in
these experiments (and in all subsequent experiments
in this paper), we pre-filter the data according to a
statistical test that eliminates the bulk of the uninter-
esting predicates. In particular, we retain predicate i
only if it passes the following simple test:

P (pred i is true and run fails | pred i observed) >

P (pred i is true and run succeeds | pred i observed),

where P is estimated via empirical counts.

2.1. A Single-Bug Algorithm

We first examine the results of running the single-
bug algorithm of Zheng et al. (2004) on the MOSS
dataset. This is essentially a classification algorithm
with feature selection via L1 penalty. Table 1 presents
the top ten predicates selected by this algorithm. The
predicates fall into two groups; none of the predicates
is very useful for bug-finding. The (i > ...) pred-
icates simply count the length of the command-line.
In our experiments, longer command-lines are corre-
lated with failed runs, though successful runs often
have long command-lines as well. Hence, while these
predicates cover many failed runs, they are not strong
bug predictors overall.

The other group of predicates are also of limited use-
fulness, but for a different reason. Specifically, the
((p+passage_index)-> ...) predicates are specific
conditions that are satisfied only in certain instances
of bug #9. These predicates may sometimes be highly
indicative of sub-modes of the bug, but do not cover
all of the runs that crash due to bug #9.

Statistical Debugging: Simultaneous Identification of Multiple Bugs

1 2 3 4 5 6 7 9
0

200

400

600
Cluster 1

Bug ID

N
um

 ru
ns

1 2 3 4 5 6 7 9
0

50

100

150
Cluster 2

Bug ID
1 2 3 4 5 6 7 9

0

100

200

300
Cluster 3

Bug ID
1 2 3 4 5 6 7 9

0

500

1000

1500

2000
Cluster 4

Bug ID

1 2 3 4 5 6 7 9
0

500

1000
Cluster 5

Bug ID

N
um

 ru
ns

1 2 3 4 5 6 7 9
0

100

200

300

400
Cluster 6

Bug ID
1 2 3 4 5 6 7 9

0

10

20

30
Cluster 7

Bug ID
1 2 3 4 5 6 7 9

0

200

400

600

800
Cluster 8

Bug ID

Figure 1: Bug histograms of MOSS run clusters re-
turned by K-means.

In addition to these issues which illustrate that the
single-bug algorithm can fail in terms of both sensi-
tivity and specificity, it is also worth noting the high
degree of redundancy in the list of the top ten predi-
cates. A more effective algorithm would return a single
highly-predictive predicate for each bug.

2.2. Clustering Runs

Let us leave behind the classification perspective, and
attempt to treat the multi-bug problem using a stan-
dard clustering tool. In particular, we apply K-means
clustering on the failed MOSS runs in hopes of resolv-
ing the underlying true bug labels. (K-means cluster-
ing yielded similar results on two other test programs,
RHYTHMBOX and EXIF.)

Each run is represented by a vector of (non-binary)
predicate counts. We include only predicates with non-
zero variance, and center and normalize each predicate
dimension by subtracting the sample mean and divid-
ing by the sample standard deviation.

To make the problem particularly easy for the algo-
rithm, we set the number of clusters equal to the
true number of bugs in MOSS, thus K = 8. We
repeat K-means several times with random initializa-
tion and pick the clustering with the smallest intra-
cluster distance. Figure 1 shows the resulting “bug
histograms”—a representation in which each bin con-
tains the number of runs failing due to that bug. An
ideal bug histogram would exhibit peaks at distinct
bugs. Clusters 1, 3 and 4 clearly capture bugs #3,
#6, and #5, respectively. The rest of the clusters
are much less distinct. Some clusters contain multiple
bugs, while others contain subsets of a single bug. In
particular, bugs #1 and #9 are scattered across mul-
tiple K-means clusters.

A closer analysis of the runs in each cluster reveals
why näıve clustering fails. The clusters are capturing

usage modes of the program, not failure modes. In
hindsight, this is not surprising—the usage modes are
much more salient statistically than the failure modes.
Without additional constraints, clustering algorithms
home in on program usage modes, which may provide
little leverage for bug detection.

2.3. Clustering Predicates

As we saw in our attempt to use the single-bug al-
gorithm (and as we have seen when using other al-
gorithms), predicate redundancy can be a significant
problem. Users of a statistical debugging tool do not
want to wade through a long list of redundant pred-
icates, particularly if the redundancy is not obvious.
To address this problem, and to begin to address is-
sues of feature selection in the clustering context, we
can attempt to cluster predicates.

In studying this problem, we found that it interacts
strongly with the sparsity that is characteristic of our
domain. Suppose predicates a, b, and c are mutually
redundant. At a sampling rate of d, it takes O(1/d2)
runs for each predicate pair to be co-observed, and
O(1/d3) runs for all three to be observed together. In
practice, there may not be enough runs in the dataset
for us to observe large values of similarity among all
redundant predicates. It is much more probable that
we would observe, for instance, that a is close to b, and
b is close to c, but a is not close to c.

These considerations led us to explore spectral cluster-
ing methods for predicate clustering, given the ability
of the spectral approach to respect transitivity. Spec-
tral clustering requires a similarity metric, which we
took to be the product-moment correlation coefficient
between pairs of predicates. In order to reduce bias
arising from the predicate sampling process, we must
condition on the observation status of predicates. As-
suming that predicates from different instrumentation
sites are independent of each other, the conditional
correlation coefficient can be written as:

ρ(X, Y | X, Y observed) =
pxy − pxpy√

px(1− px)py(1− py)
,

where

px := P (X = 1 | X observed),
py := P (Y = 1 | Y observed),

pxy := P (X = 1, Y = 1 | X, Y observed).

Using the spectral clustering algorithm of Ng et al.
(2002), we vary the number of clusters from 5 to 20
and pick the clustering with the smallest average intra-
cluster distance (the result turned out to be 9).

Statistical Debugging: Simultaneous Identification of Multiple Bugs

12345679
0

100

200
Cluster 1

Bug ID

N
um

 ru
ns

12345679
0

100

200

300
Cluster 2

Bug ID
12345679

0

200

400
Cluster 3

Bug ID
12345679

0

500

1000
Cluster 4

Bug ID
12345679

0

100

200

300
Cluster 5

Bug ID

1 2 3 4 5 6 7 9
0

500

1000
Cluster 6

Bug ID

N
um

 ru
ns

1 2 3 4 5 6 7 9
0

200

400

600

800
Cluster 7

Bug ID
1 2 3 4 5 6 7 9

0

100

200

300
Cluster 8

Bug ID
1 2 3 4 5 6 7 9

0

200

400

600
Cluster 9

Bug ID

Figure 2: Average bug histograms of MOSS predicate
clusters.

Figure 2 plots the average bug histograms of the predi-
cate clusters. For each cluster, we count the number of
runs exhibiting each bug, averaged over the number of
predicates in that cluster. Most of the bug histograms
in Figure 2 do not contain a single predominant peak.
The only exception is cluster 4, which contains most of
the predictors for bug #5. All other clusters contain
mixtures or subsets of bugs.

These non-distinct bug histograms arise due to the
presence of what we refer to as super-bug predic-
tors. Super-bug predictors are usually very general
pre-conditions for failure — the predicates measuring
command-line length in Table 1 are example super-bug
predictors. Super-bug predictors loosely correlate with
many failed runs but also tend to be true in some num-
ber of successful runs. The MOSS dataset contains
some prominent super-bug predictors for bugs #1 and
#9, which bond the predicate clusters together. The
resulting super-cluster is then broken along weaker
links, leaving a set of scrambled predicates that do
not correspond neatly to bugs.

2.4. Issues

We have identified several issues that any successful
multi-bug algorithm must face. First, some predicates
are non-specific super-bug predictors that make feature
selection difficult; they are useful in multiple clusters
and thus are highly supported. Second, other predi-
cates are sub-bug predictors, highly-specific predictors
that home in on specific aspects of an individual bug
but fail to reveal the general case. Third, predicate
redundancy is a problem, both algorithmically and in
terms of feedback to the user. Finally, interlaced with
all of these issues is the issue of sampling. The data
collection framework samples predicate so that the in-
strumentation does not impact the performance of a
running program. But this creates subtle statistical
biases and linkages that complicate the core issues of
clustering and feature selection.

dβ

X

N

M

α

γλ

Y

Figure 3: Predicate truth probability model.

3. Algorithm

The algorithm that we propose in this section has two
parts. The first part deals with sampled predicates
using a graphical model to infer truth probabilities
from observed data. The inferred probabilities serve
as input to the second stage, which is a bi-clustering
algorithm that attempts to select features by jointly
clustering runs and predicates.

3.1. Inferring Truth Probabilities

Based on the observed counts and what we know about
the sampling process, we can make probability state-
ments about the truth of each of the predicates in any
particular run. In doing so, we hope to ameliorate
the data sparsity problem, reducing bias caused by
sampling and thereby isolating these issues from those
associated with clustering and feature selection.

Figure 3 is a graphical model for the truth probability
of a single predicate. M is a random variable repre-
senting the number of times a predicate is observed in
a particular run of the program. Y denotes the num-
ber of times it is observed to be true. X is the actual
number of times that the predicate was true in that
run, and N is the number of times the instrumenta-
tion site was reached. We observe M and Y , but not N
and X. Our ultimate goal is to compute the posterior
truth probability P (X > 0 | M,Y) for each predicate
in each run.

In the MOSS dataset, we observe that the number
of times a site is reached often follows a Poisson-like
distribution. However, during certain runs, the site
may not be reached at all, leading to an additional
spike at zero. Therefore we endow N with a prior that
is a mixture of a Poisson distribution and a spike at
zero. Given N , we model X as a mixture of a binomial
distribution, a spike at zero, and a spike at N . The
spikes represent “sticky” modes where the predicate

Statistical Debugging: Simultaneous Identification of Multiple Bugs

is either never true or always true. Lastly, based on
the predicate sampling process, we know that P (M |
N) is a binomial distribution with parameter d (the
sampling rate). Y has a hypergeometric distribution
given M , N , and X.

Thus the conditional probabilities of the predicate
truth probability model are:

N ∼ γPoi(λ) + (1− γ)δ(0)
X | N ∼ β1Bin(α, N) + β2δ(0) + β3δ(N)
M | N ∼ Bin(d, N)

Y | M,N,X ∼ Hypergeo(M,N,X),

where δ(c) denotes a delta function at c.

We endow the parameters α, β, λ, and γ with con-
jugate priors. Thus, α and γ are beta-distributed, β
has a Dirichlet prior distribution, and λ has a Gamma
distribution. We use an empirical Bayes approach to
set all of the hyperparameters given data.

The ultimate goal is to compute the posterior truth
probability P (X > 0 | m, y). The case where y > 0 is
trivial since P (X > 0 | M = m,Y > 0) = 1. Hence we
only need to examine the case where Y = 0. It is easier
to first compute p0 := P (X = 0 | M = m,Y = 0), and
then calculate P (X > 0 | M = m,Y = 0) = 1− p0. A
short calculation yields the following posteriors:

p0 =
β̂1(1− α̂)me−λ̂α̂(1−d) + β̂2

β̂1(1− α̂)m + β̂2

,

for m > 0, and for m = 0,

p0 =
(β̂1e

−λ̂α̂(1−d) + β̂2 + β̂3e
−λ̂(1−d))γ̂e−λ̂d + (1− γ̂)

γ̂e−λ̂d + (1− γ̂)
.

3.2. Collective Voting

Our approach to solving the multi-bug problem re-
poses on a symmetry principle: Predicates should
group by the runs that they predict; runs should group
by the predicates that predict them. We approach the
problem from the perspective of bi-clustering (see,
e.g., Dhillon, 2001; Hartigan, 1972). But generic bi-
clustering algorithms do not directly address the id-
iosyncrasies of the predicate-run relationship; the stan-
dard distance metrics and information-theoretic objec-
tives are not obviously applicable. We develop a novel
instance of a bi-clustering algorithm that encapsulates
the specific setting of the statistical debugging prob-
lem.

The algorithm essentially performs an iterative collec-
tive voting process, alternating between updates of

predicate quality and the vote distribution of runs.
Each failed run ultimately casts a vote for its favorite
predicate. The predicates are then ranked by the num-
ber of votes they receive.

In our recursive voting procedure, program predicates
are the candidates, and runs are the constituents. A
predicate has a “quality” Qi based on the votes it re-
ceives from the runs. Each run has one unit vote to
cast. In the beginning, a run distributes fractional
votes among the candidate predicates, and a candidate
receives a vote proportional to its quality. Predicates
must compete for a run’s attention, and therefore the
more predictors a run has, the smaller vote each pred-
icate receives. The competition between predicates
encapsulates the problem of redundancy. The voting
process iterates until convergence. At that point, each
run must firm its resolve and cast the entire vote for a
single predicate. Finally, the predicates are ranked by
their votes.

The inputs to the algorithm are the posterior truth
probabilities inferred via the procedure described in
the previous section. We carry out this calculation for
each run and each predicate, and let Aij denote the
probability that predicate i is true in run j.

Let F denote the set of failed runs and S the set of
successful runs. Qi and Qī respectively denote the
quality of predicate i and its complement.1 Fi and Si

respectively measure the contribution of predicate i to
F and S; Fī and Sī respectively measure the contribu-
tion of the complement of predicate i to F and S. We
define the following set of coupled update equations:

Qi =
Fi

Si
· Sī

Fī

, Qī =
1
Qi

, (1)

Fi =
∑
j∈F

Aij
Rij∑
k Rkj

, Fī =
∑
j∈F

Aīj

Rīj∑
k̄ Rk̄j

, (2)

Si =
∑
j∈S

Aij
Rij∑
k Rkj

, Sī =
∑
j∈S

Aīj

Rīj∑
k̄ Rk̄j

, (3)

Rij =

{
AijQi, if j ∈ F
Aij/Qi, if j ∈ S

Rīj =

{
AījQī, if j ∈ F
Aīj/Qī. if j ∈ S

(4)

Let us take a moment to decipher these equations.
Equation 1 dictates that a predicate has high qual-
ity if it contributes to failed runs but not successful
runs, and if its complement contributes to successful
runs but not failed runs. The contribution of predi-

1For example, if predicate i is (f == NULL), then its
complement is the predicate (f != NULL). A predicate and
its complement may be both true (at different times) dur-
ing the lifetime of a program run.

Statistical Debugging: Simultaneous Identification of Multiple Bugs

Table 2: Summary statistics for the datasets: lines
of code, numbers of successes and failures, number of
predicates, and the number of top predicates account-
ing for over 90% of all failures after the voting process.

Runs

Lines S F # Preds 90%

MOSS 6001 26,239 5505 202,998 14
RHYTHMBOX 56,484 12,530 19,431 857,384 6
EXIF 10,588 30,789 2211 156,476 2

cate i to run j is defined to be Aij , the probability
that it is true in that run multiplied by Rij , the vote
that run j casts for predicate i, and normalized by the
total number of votes cast by run j. (See Equation 2
and Equation 3.) Run j decides how much vote to
cast toward predicate i based on Qi, the predicate’s
failure prediction strength, and the truth probability
Aij . (See Equation 4.)

Let us consider a small test example. Suppose the
data set includes one failed run, one successful run,
two predicates a and b, and their complements ā and
b̄. Predicate a is a good bug predictor that is true
only in the failed run, and its complement is only
true in the successful run. Predicate b is a generic
non-informative super-bug predictor: b and b̄ are both
true in both runs. Initially, all predicates have equal
quality: Qa = Qā = Qb = Qb̄ = 1. After the first
round of updates, the failed run effectively splits its
vote evenly between a and b, and the successful run
gives all its vote to b. On the other hand, b̄ re-
ceives all the vote from the failed run, and ā and b̄
share the vote of the successful run. The updated
quality scores are Qa = (0.5/0)(0.5/0) = inf and
Qb = (0.5/1)(0.5/1) = 0.25. At the end of each round
of updates, the quality scores are renormalized to have
unit sum. For computation purposes we smooth zero
scores with a small additive constant. So essentially
Qa becomes a very large number and Qb relatively
much smaller.

4. Results

4.1. MOSS

Table 2 presents statistics of three programs used in
our experiments. For MOSS, the pre-filter reduces
the number of predicates from 202,998 to 2645, and
our voting algorithm selects 14 predicates to account
for over 90% of all failures.

Figure 4 contains bug histograms of the top nine pred-
icates. The numbers of runs attributed to each pred-
icate are included in parentheses at the top of each
plot. The bug histograms are much more homogeneous

12345679
0

1000

2000
Pred 1 (1572)

Bug ID

N
um

 ru
ns

12345679
0

500

1000
Pred 2 (880)

Bug ID
12345679

0

500

1000
Pred 3 (626)

Bug ID
12345679

0

200

400

600
Pred 4 (489)

Bug ID
12345679

0

200

400
Pred 5 (391)

Bug ID

1 2 3 4 5 6 7 9
0

100

200

300

400
Pred 6 (301)

Bug ID

N
um

 ru
ns

1 2 3 4 5 6 7 9
0

100

200

300
Pred 7 (222)

Bug ID
1 2 3 4 5 6 7 9

0

50

100

150
Pred 8 (146)

Bug ID
1 2 3 4 5 6 7 9

0

50

100

150
Pred 9 (134)

Bug ID

Figure 4: Bug histograms of top MOSS predicates.

Table 3: Top MOSS failure predictors.
Rank Predicate

1 files[filesindex].language > 16
2 config.tile_size > 500
3 config.match_comment is TRUE (line 1994)
4 __lengthofp == 200
5 i > 52
6 i___0 > 500
7 config.match_comment is TRUE (line 1993)
8 f < yyout
9 i >= 8

than our previous attempts in Section 2. Each predi-
cate (see Table 3) focuses on one specific bug and each
bug is represented by at least one predicate.2 Some
bugs are represented by a couple of prominent sub-bug
predictors. For instance, predicates 3 and 7 both ac-
count for bug #1, which occurs only when C comment-
matching is turned on. Predicates 4 and 6 check for
the size of a certain array; both predicates account for
bug #9, an array-overrun bug. While these sub-bug
predictors do not account for the entire suite of failed
runs resulting from one bug, they are nevertheless use-
ful indicators of the causes of failure.

We manually verified the quality of each of the top
predicates in Table 3. The first eight predicates are
all direct indicators of various bugs. But let us focus
on the ninth predicate. This predicate turns out to be
a super-bug predictor; it is true when the command-
line length is longer than 8. Why is a super-bug pre-
dictor selected to account for bug #6? The reason
turns out to lie in the definition of predicate quality
Qi (Equation 1). Qi gives a high score to a predicate
if it contributes mostly to failed runs and its comple-
ment contributes mostly to successful runs. This cri-
terion works well for most bug predictors. However,
the only prominent predictor for bug #6 in MOSS
involves a command-line flag setting the “-p” option.
However, the complement of this predicate is also true

2Bug #7 is an exception: in our MOSS dataset, it does
not have any strong predictors that occur independently of
all the other bugs.

Statistical Debugging: Simultaneous Identification of Multiple Bugs

in many failed runs, because other command-line op-
tions may trigger other bugs. In this case, the predic-
tion strengths of the predicate and its complement are
working against each other.

All is not lost. Even though the algorithm fails to
select the most informative predictor for bug #6, it
nevertheless succeeds in clustering the runs failing due
to the same bug. Given the run clusters, we can apply
simple single-bug algorithms to select useful bug pre-
dictors for each cluster. This has the added advantage
of giving us predicate clusters. For example, running a
simple univariate hypothesis test 3 on the predicate 9
run cluster yields a predicate “cluster” with these top
two predicates:

1. STREQ(argv[i], "-p") is TRUE in handle_options();
2. strcmp(argv[i], "-p") == 0 in handle_options().

These predicates are equivalent and both indicate that
the “-p” option is set. The rest of the predicates on
the list are super-bug predictors similar to the ones we
have already seen and are not shown.

4.2. RHYTHMBOX and EXIF

We tested our algorithm on two other real-world pro-
grams containing multiple bugs. RHYTHMBOX is
a graphical, open-source music player that contains at
least two bugs. One of the bugs exposes a bad coding
pattern related to previously freed and reclaimed event
objects. Our discovery of this bug subsequently led to
the discovery of other bugs within RHYTHMBOX
resulting from the same bad coding practice. (Liblit
et al., 2005)

Our algorithm selects the following predicates for
RHYTHMBOX.

1. (mp->priv)->timer is NULL
2. monkey_media_player_get_uri() == 0
3. vol <= (float) 0 is TRUE
4. (db->priv)->thread_reaper_id >= 12
5. rorder (new val) < rorder (old val)
6. (mp->priv)->tick_timeout_id > 12

The first predicate is an important clue for a bug in-
volving a dangling ID of an object that has already
been destroyed. The predicate indicates that a pointer
to a timer object is NULL, meaning that the object
has already been deallocated. However, other parts
of the program still holds an ID to this object; subse-
quent references to the deallocated object cause the
program to crash. The second predicate is a pre-
dictor of a race condition bug; it indicates that the
monkey_media_player object has already been de-
stroyed and subsequent callbacks to the object cause

3Let πf denote the average truth probability of a pred-
icate in the failed run cluster, and πs that in the set of
successful runs. We rank predicates according to the test
statistic of the two-sample Bernoulli test for πf > πs.

a crash. The remaining predicates are manifestations
of other unknown bugs in RHYTHMBOX.

EXIF, an open-source image manipulation tool, con-
tains three bugs which are covered by four predicates
selected by our algorithm.

1. i < k
2. sizeof(JPEGSection)*(data->count-2) < 0
3. machine_readable is TRUE
4. (data->ifd[4])->count is FALSE

Predicate clusters of predicates 1 and 3 indicate that
they predict the same bug: in EXIF’s machine-
readable output mode, a function call returns a NULL
pointer value, which causes a crash during printing.
The second ranked predicate indicates that a certain
count is negative. The count is subsequently passed to
the function memmove() and causes a crash.

The fourth predicate is a secondary indicator of the
last bug in EXIF. The primary indicator of the bug,
o + s > buf_size, is ranked number 1 in predicate
4’s predicate cluster. When this condition is true, the
program neglects to allocate a chunk of memory, which
crashes the program at a later stage. Out of 2211
failed runs in the EXIF dataset, only 12 crashed due
to this bug. Hence its predictor is ranked behind the
predictors for the other two bugs.

Overall, our multi-bug algorithm successfully clusters
failed runs by their bugs, and often selects direct pre-
dictors of those bugs. Furthermore, given these run
clusters, we can apply simple single-bug algorithms
such as univariate hypothesis testing to rank and clus-
ter correlated predicates. We find that these predi-
cate clusters are often useful in interpreting the output
of our debugging algorithm. It is worth noting that,
without the run clusters, simple univariate algorithms
would not have captured the correct bug predictors in
our datasets.

4.3. Comparison to Other Algorithms

We compare our algorithm with two statistical debug-
ging techniques presented in recent literature. In ear-
lier work (Liblit et al., 2005), we proposed a predi-
cate ranking algorithm based on the harmonic mean
of predicate sensitivity and specificity. The algorithm
then performs a heuristic “projection” step in which
runs that have already been accounted for by the top
predicate are eliminated. Liu et al. (2005) present the
SOBER algorithm, which aims to solve the single-bug
problem using a test derived from one-sample hypoth-
esis testing.

We first compare the three algorithms on MOSS,
RHYTHMBOX, and EXIF. The harmonic mean pro-
jection method selects predicates of comparable qual-
ity to the bi-clustering method in all three cases. The

Statistical Debugging: Simultaneous Identification of Multiple Bugs

SOBER single-bug algorithm fares much worse: for
MOSS, it selects 25 sub-bug predictors for bug #1,
followed by 4 predictors for bug #4, followed by more
sub-bug predictors for bug #1.

To compare performance more systematically, we es-
timate the amount of programmer effort required to
find bugs using each algorithm. Starting from the top
ranked predictor, we model the programmer as per-
forming a breadth-first search in the program depen-
dence graph until reaching the buggy line(s) of code
(Cleve & Zeller, 2005; Renieris & Reiss, 2003). The
effort required is the percentage of code examined dur-
ing this search. An implementation of this metric was
provided by Holger Cleve and runs atop CodeSurfer,
provided by GrammaTech, Inc.

We apply this comparison to the Siemens test suite
(Hutchins et al., 1994), which contains 130 single-bug
variants of 7 programs. This suite cannot gauge the
effectiveness of multi-bug debugging algorithms, but
it is currently the most widely used large benchmark
for bug-hunting tools. We find that SOBER performs
slightly better up to 7% of code examined, while above
this point our bi-clustering algorithm offers superior
performance. Overall, the bi-clustering algorithm re-
quires less code examination on average than the other
two algorithms on 130 tested programs, as is demon-
strated in the following performance matrix:

better worse same

Bi-cluster vs. SOBER 65 60 5
Bi-cluster vs. Project 70 53 7
SOBER vs. Project 66 53 11

5. Conclusions

In this paper, we present a systematic approach to
statistical debugging of software programs in the pres-
ence of multiple bugs. Unlike its simpler single-bug
sibling, the multi-bug problem is compounded by is-
sues of sampling sparsity and complex inter-predicate
relationships. Our algorithm specifically targets the
pitfalls of simpler algorithms, and is proven to work
well empirically on real world programs. Furthermore,
the probability inference and collective voting frame-
work could potentially be adjusted to accommodate
more general bugs and predicate settings.

References

Cleve, H., & Zeller, A. (2005). Locating causes of pro-
gram failures. Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005).
St. Louis, Missouri.

Dhillon, I. S. (2001). Co-clustering documents and
words using bipartite spectral graph partitioning.
Proceedings of The Seventh ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining(KDD). San Francisco, California.

Hartigan, J. A. (1972). Direct clustering of a data
matrix. Journal of the American Statistical Associ-
ation, 67, 123–129.

Hutchins, M., Foster, H., Goradia, T., & Ostrand, T.
(1994). Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria. Proc.
16th Int. Conf. Software Engeineering (ICSE’94)
(pp. 191–200).

Liblit, B., Aiken, A., Zheng, A. X., & Jordan, M. I.
(2003). Bug isolation via remote program sampling.
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementa-
tion. San Diego, California.

Liblit, B., Naik, M., Zheng, A. X., Aiken, A., & Jor-
dan, M. I. (2005). Scalable statistical bug isolation.
Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementa-
tion. Chicago, Illinois.

Liu, C., Yan, X., Fei, L., Han, J., & Midkiff, S. P.
(2005). SOBER: Statistical model-based bug local-
ization. Proceedings of the Fifth Joint Meeting of
the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE-05).

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spec-
tral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems 14. Cam-
bridge, MA: MIT Press.

Renieris, M., & Reiss, S. P. (2003). Fault localization
with nearest neighbor queries. Proc. 21st Int. Conf.
on Automated Software Engineering (ASE’03) (pp.
30–39). IEEE Computer Society.

Zheng, A. X., Jordan, M. I., Liblit, B., & Aiken, A.
(2004). Statistical debugging of sampled programs.
Advances in Neural Information Processing Systems
16. Cambridge, MA: MIT Press.

	Introduction
	Multi-Bug Challenges
	A Single-Bug Algorithm
	Clustering Runs
	Clustering Predicates
	Issues

	Algorithm
	Inferring Truth Probabilities
	Collective Voting

	Results
	MOSS
	RHYTHMBOX and EXIF
	Comparison to Other Algorithms

	Conclusions

