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Abstract. The study of social networks has gained new importance
with the recent rise of large on-line communities. Most current approaches
focus on deterministic (descriptive) models and are usually restricted to a
preset number of people. Moreover, the dynamic aspect is often treated
as an addendum to the static model. Taking inspiration from real-life
friendship formation patterns, we propose a new generative model of
evolving social networks that allows for birth and death of social links
and addition of new people. Each person has a distribution over social
interaction spheres, which we term ”contexts.” We study the robustness
of our model by examining statistical properties of simulated networks
relative to well known properties of real social networks. We discuss the
shortcomings of this model and problems that arise during learning. Sev-
eral extensions are proposed.

1 Introduction

In 1967, the seminal “small world” study [1] brought social networks into the
public consciousness. Since then, researchers have paid close attention to laws
that seem to govern human and business networks. How do links between people
form? Is it enough to look at pairs or should triads of individuals be considered
separately? Many approaches study networks on the scale of links and individuals
to identify key patterns and describe network properties [2].

Data collection used to be an expensive and tedious process prone to sampling
bias. But as more information are becoming available on-line, networks on the
order of tens of thousands of people have become easily accessible. Studies of
large hyper-link networks reveal similar behavior to those of large social nets
(e.g. co-authorships). Thus a new modeling approach was developed based on
random graphs [3, 4]. Here the goal is not to model the network on a link-by-link
basis but to address its overall behavior. The new approach is more generative in
nature, though most models are still very simplistic. The preferential attachment
model [3] describes the mechanism of network evolution with a focus on power-
law degree distributions. Once the links are established, they remain in the
network unperturbed. Such simplifying assumptions make the models feasible
for analysis, but fail to capture the complexity of real social networks.

In this work, we attempt to address several important issues raised by both
communities. First, we directly model the generative process behind network



dynamics. We focus on the evolution of interpersonal relationships over time,
and explicitly model the birth and gradual decay of social links. Secondly, we
demonstrate that the model generates networks that exhibit properties com-
monly observed in many natural topologies.

We motivate our model with an example. Imagine that Andy moves to a
new town. He may find some new collaborators at work, make friends at parties,
or meet fellow gym-goers while exercising. In general, Andy lives in a number
of different spheres of interaction or contexts. As time goes on, he may find
himself repeatedly meeting certain people in different contexts, consequently
developing stronger bonds. Acquaintances he never meets again may quickly
fade away. Andy’s new friends may also introduce him to their friends (a well
known transitive phenomenon called triadic closures in social science [2]).

With this example in mind, we begin with a presentation of our model in
Section 2. Experimental results are discussed in Section 3. We show how to
learn the parameters of our model using Gibbs sampling in Section 4, and give
possible extensions of the model in Section 5. Section 6 contains a brief survey
of related work, and Section 7 discusses the strengths and weaknesses of the
proposed model.

2 The Model

2.1 Notation

DCFM allows the addition of new people into the network at each time step. Let
T denote the total number of time steps and Nt the number of people at time
t. N = NT denotes the final total number of people. Let Mt denote the number
of new people added to the network at time t, so that Nt = Nt−1 + Mt.

Links between people are weighted. Let {W 1, . . . ,WT } be a sequence of
weight matrices, where W t ∈ ZNt×Nt

+ represents the pairwise link weights at
time t. We assume that W t is symmetric, though it can be easily generalized to
the directed case.

The intuition behind our model is that friendships are formed in contexts.
There are a fixed number of contexts in the world, K, such as work, gym, restau-
rant, grocery store, etc. Each person has a distribution over these contexts, which
can be interpreted as the average percentage of time that he spends in each con-
text.

2.2 The Generative Process

At time t, the Nt people in the network each selects his current context Rt
i from

a multinomial distribution with parameter θi, where θi has a Dirichlet prior
distribution:

θi ∼ Dir(α), ∀i = 1 : N (1)
Rt

i | θi ∼ Mult(θi), ∀t = 1 : T, i = 1 : Nt. (2)



The number of all possible pairwise meetings at time t is DYADt = {(i, j) |
1 ≤ i ≤ Nt, i < j ≤ Nt} . For each pair of people i and j who are in the same
context at time t (i.e., Rt

i = Rt
j), we sample a Bernoulli random variable F t

ij with
parameter βiβj . If F t

ij = 1, then i and j meets at time t. The parameter βi may
be interpreted as a measurement of friendliness and is a beta-distributed random
variable (making it possible for people to have different levels of friendliness):

βi ∼ Beta(a, b), ∀i = 1 : N, ∀(i, j) ∈ DYADt

F t
ij | Rt

i, R
t
j ∼

{
Ber(βiβj) if Rt

i = Rt
j

I0 o.w.
(3)

where I0 is the indicator function for F t
ij = 0.

In addition, the newcomers at time t have the opportunity to form triadic
closures with existing people. The probability that a newcomer j is introduced
to existing person i is proportional to the weight of the links between i and the
people whom j meets in his context. Let TRIADt = {(i, j) | 1 ≤ i ≤ Nt−1, 1 ≤
j ≤ Mt} denote the pairs of possible triadic closures. For all (i, j) ∈ TRIADt,
we have:

Gt
ij | W t−1, F t

·j , R
t
· ∼

{
Ber(µt

ij) if Ri 6= Rj

I0 o.w.,
(4)

where µt
ij :=

∑Nt

`=1 W t−1
i` F t

`j/
∑t−1

`=1 W t−1
i` .

Connection weight updates are Poisson distributed. Our choice of a discrete
distribution allows for sparse weight matrices, which are often observed in the
real world. Pairwise connection weights may drop to zero if the pair have not
interacted for a while (though nothing prevents the connection from reappearing
in the future). If i and j meets (F t

ij = 1 or Gt
ij = 1), then W t

ij has a Poisson
distribution with mean equal to a multiple (γh) of their old connection strength.
γh signifies the rate of weight increase as a result of the “effectiveness” of a
meeting; if γh > 1, then the weight will in general increase. (The weight may
also decrease under the Poisson distribution, a consequence perhaps of unhappy
meetings.) If i and j do not meet, their mean weight will decrease with rate
γ` < 1. Thus

W t
ij | W t−1

ij , F t
ij , G

t
ij , γh, γ` ∼{

Poi(γh(W t−1
ij + ε)) if F t

ij = 1 or Gt
ij = 1

Poi(γ`W
t−1
ij ) o.w.

(5)

where W t−1
ij = 0 by default for (i, j) /∈ TRIADt, and ε is a small positive constant

that lifts the Poisson mean away from zero. As W t−1
ij becomes large, γh and γ`

control the increase and decrease rates, and the effect of ε diminishes. γh and γ`

have conjugate gamma priors:

γh ∼ Gamma(ch, dh), (6)
γ` ∼ Gamma(c`, d`). (7)
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Fig. 1. Graphical representation of one time step of the generative model. Rt is a Nt-
dimensional vector indicating each person’s context at time t. F t is a Nt ×Nt matrix
indicating pairwise dyadic meetings. Gt is a Nt−1 ×Mt matrix that indicate triadic
closure for newcomers at time t. W t is the matrix of observed connection weights at
time t. θ, β, γh, and γ` are parameters of the model (hyperparameters are not shown).

Figure 1 contains a graphical representation of our model. The complete joint
probability is:

P (θ,β, γh, γ`,W
1:T , R1:T , F 1:T , G1:T ) =

P (θ)P (β)P (γh)P (γ`)
∏

t

P (Rt|θ)P (F t|Rt,β)×

P (Gt|Rt, F t,W t−1)P (W t|Gt, F t,W t−1) (8)

3 Experiments

We illustrate the behavior of our model under different parameter settings on a
set of established metrics.

3.1 Metrics

Degree distribution:
In an undirected graph, the degree of a node is its number of neighbors. For
node i, we define its degree di to be

∑N
j=1 I(Wij>0), and the average degree of

the graph
∑N

i=1 di/N .
Node degrees in large natural networks often follow a power law distribution

[5], i.e., the number of nodes D with degree n roughly conforms to the function
D(n) = n−ρ for some exponent ρ. The value of ρ may vary from network to



network, but the overall functional form remains the same. Intuitively, this means
that there are many people with a few friends, and very few people with a lot of
friends.

Clustering coefficient:
Across different social networks, it has often been observed that subsets of people
tend to form fully-connected cliques. This inherent clustering tendency may be
quantified by the clustering coefficient [6]. For the i-th node, Ci is defined to
be the ratio between the number of edges Ei that actually exist between its
di neighbors and the number of edges that would exist if the neighbors form
a clique: Ci = 2Ei

di(di−1) . The clustering coefficient of the whole network is the
average over all nodes: C =

∑
i Ci/N .

Average path length:
We compute the length of the shortest path sij between every pair of nodes i
and j. If i and j are not connected, then sij = ∞. Let S := {(i, j) | sij < ∞} be
the set of connected pairs. The average path length of the graph is defined to be
s̄ :=

∑
(i,j)∈S sij/|S|.

Effective diameter:
The diameter of a graph is the maximum of the shortest path distances between
any pair of nodes: max(i,j) sij . If the graph consists of several disconnected clus-
ters, its diameter is defined to be the maximum over all cluster diameters. Graph
diameter can be heavily influenced by outliers. A more robust quantity is the
effective diameter, commonly defined as the ninetieth percentile of all shortest
paths. Let σ(x) be the empirical quantile function of shortest path lengths, i.e.,
σ(x) = argmaxs{s | f(s) < x}, where f(s) = |{(i, j) : sij < s}|/N2 is the empir-
ical cumulative distribution of sij . The effective diameter is taken to be σ(.90),
linearly interpolated if there is no exact match for the ninetieth percentile.

3.2 Simulations

We analyze the behavior of the model under different parameter settings us-
ing the four metrics introduced above. Albert and Barabási [5] and Newman
[4] observe a wide range of values for these metrics in a variety of real social
networks. Our model can generate networks whose clustering coefficient, aver-
age path length, and effective diameter fall within the range of observed values.
Here we discuss how different parameter settings affect the values of these met-
rics, and provide intuition about why this is so.

Unless otherwise specified, the number of contexts K is set to 10. The context
preference parameter θi is drawn from a peaked Dirichlet prior, where αk∗ = 5
for a randomly selected k∗, and αk = 1 otherwise. This means that each person
in the network has a slight preference for one context. The friendliness parameter
βi is drawn from a Beta(a, b) distribution, where a = 1 and b varies. The weights
update rates are γh = 2, γ` = 0.5, and ε = 1. We add one person to the network
at every time step, so that nt = t. All experiments are repeated with 10 trials.

Friendliness The parameter βi determines the “friendliness” of the i-th person
and is drawn from a Beta(a, b) distribution. As b increases from 2 to 10, aver-



age friendliness decreases from 0.33 to 0.09. We wish to test the effect of b on
overall network properties. In order to isolate the effects of friendliness, we fix
the context assignments by setting Rt

i = R1
i for all t > 1. In this setting, people

do not form triadic closures, and connection weights are updated only through
dyadic meetings.

2 3 5 10
0

5

10

15

A
ve

. d
eg

re
e

2 3 5 10
2

4

6

8

10

A
ve

 p
at

h 
le

ng
th

2 3 5 10
0.66

0.68

0.7

0.72

0.74

0.76

0.78

A
ve

 c
lu

st
 c

oe
ff

b from Beta(1,b)
2 3 5 10

2

4

6

8

10

12

14

A
ve

 e
ff 

di
am

b from Beta(1,b)

Fig. 2. Effects of the friendliness parameter on a network of 200 people with fixed
contexts. The x-axes represent different values of b in Beta(1, b).

As people become less friendly, one expects a corresponding decrease in av-
erage node degree. This is indeed what we observe in the average degree plot
in Figure 2. Interestingly, the clustering coefficient goes up as friendliness goes
down. This is because low friendliness makes for smaller clusters, and it is easier
for smaller clusters to become densely connected than it is for bigger clusters.
We also observe large variance in average path length and effective diameter at
low friendliness levels. This is due to the fact that most clusters now contain
one to two people. As small clusters become connected by chance, shortest path
lengths varies from trial to trial.

Frequency of context switching In the current model, each person draws a
new context at every time step. However, we can easily imagine a person working
on one project for a while and then switching to the next project. When context



switching is infrequent, people may develop stronger (and more) within-context
relations.
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Fig. 3. Effects of the frequency of context switching on a network of 200 people. (b = 8)

We vary the frequency of context switching from 1 to 200 on a 200 node
network. When the frequency is 1, people switch context at every time step;
when the frequency is 200, contexts are fixed once and for all. In Figure 3, there
appears to be a phase transition when context switching occurs every 30 time
steps. This occurs as the consequence of two effects. First, when people switch
contexts too frequently, they do not have the opportunity to meet everybody
in the same context before moving on. Thus they have fewer neighbors and
form smaller clusters on average. (As previously discussed, smaller clusters can
lead to higher clustering coefficients.) Consequently, the average path length and
effective diameter are also slightly long. On the other hand, when people never
switch contexts (right-hand end of the x-axes), the number of neighbors is upper
bounded by the number of people in the context. Clustering coefficient is high
because everybody in the same context knows everybody else, and average path



length and diamter are long because there are few paths to people outside of the
current context.

Degree distribution Under different parameter settings, our model may gen-
erate networks with a variety of degree distributions. Lower levels of friendliness
typically lead to more power-law-like degree distributions, while higher levels
often result in a heavier tail. In Figure 4, we show two degree distribution plots
for different friendliness levels. In the left-hand side plot, the quadratic polyno-
mial is a much better fit than the linear one. This means that, when people are
more friendly, the drop off in the number of people with high node degree is
slower than would be expected under the power law. We do observe the power
law effect at a lower level of friendliness. In the right-hand side plot, the linear
polynomial with coefficient −1.6 gives as good of a fit as a quadratic function.
This coefficient value lies well within the normally observed range for real social
networks [5].
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Fig. 4. Log-log plot of the degree distributions of a network with 200 people. βi is
drawn from Beta(1, 3) for the plot on the left, and from Beta(1, 8) for the right hand
side. Solid lines represent a linear fit and dashed lines quadratic fit to the data. Contexts
are drawn every 50 iterations.

Birth and death of links Our proposed model attempts to capture the dy-
namics of the birth and death of links. A link is born when the connection weight



becomes non-zero, and the link dies when the weight returns to zero. Figure 5
shows link birth rates as the proportion of newly established ties to the number
of possible births, and link death rates as the proportion of the number of deaths
to the number of links that exist at that point in time.
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Fig. 5. Birth (top) and death (bottom) of links in a network of 600 people over 600
time steps. Contexts switches occur every 50 iterations, K = 20 and b = 10.

At the beginning, there are few existing links. Therefore the birth rate is
relatively high. Since one person is added to the network at each time step, the
number of possible connections grows as t(t−1)/2. Thus the birth rate becomes
smaller at larger values of t. We note periodical trends in both births and deaths
of links. This periodicity coincides with changes in context. At each context
switch, a fresh pool of possible connections becomes available, and weaker links
from previous connections are now more likely to die out.



Weight distributions One of the main strengths of our model lies in its ability
to represent weighted links. In real life, friendships are not simply existent or
absent. A strong connection should take longer to dissipate than would a weak
connection. Link weights act as memory in preserving friendships. Old friend-
ships may be rekindled if the pair rotate within similar contexts. We compare
the evolution of simulated weights with email exchange in the well-known Enron
dataset. Figure 6 shows typical weight progressions over time in a simulated net-
work. Figure 7 plots typical patterns of weekly email exchange counts between
Enron employees. Our model is clearly capable of reproducing both long-lasting
and short-range connections. Previously severed links can be renewed, as is the
case for the pair (45, 47).
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Fig. 6. Weight dynamics for 4 different pairs in a network of 600 people over 600 time
steps. Contexts switches occur every 50 iterations and b = 3.
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Fig. 7. Weekly email exchange counts for four randomly selected pairs between 136
Enron employees.

4 Learning Parameters via Gibbs Sampling

Parameter learning in DCFM is possible via Gibbs sampling. We leave a detailed
investigation of learning results to another paper, but give the Gibbs updates
here for reference. Using . . . as a shorthand for “all other variables in the model,”
we have:

θi | . . . ∼ Dir(α + α′
i), (9)

P (βi | . . .) ∝ βAi+a−1
i (1− βi)b−1

∏
j 6=i

(1− βiβj)Bij , (10)

γh | . . . ∼ Gamma(ch + wh, (vh + 1/dh)−1), (11)
γ` | . . . ∼ Gamma(c` + w`, (v` + 1/d`)−1). (12)

In Equation 9, α′ik :=
∑T

t=1 I(Ri=k) is the total number of times person i is
seen in context k. In Equation 10, Ai := |{(j, t) | Rt

i = Rt
j and F t

ij = 1}|
is the total number of dyadic meetings between i and any other person, and
Bij := |{t | Rt

i = Rt
j and F t

ij = 0}| is the total number of times i has “missed”
an opportunity for a dyadic meeting. Let H := {(i, j, t) | F t

ij = 1 or Gij = 1}
represent the union of the set of dyadic and triadic meetings, and L := {(i, j, t) |
(i, j) ∈ DYADt and F t

ij = 0} the set of missed dyadic meeting opportunities.
wh :=

∑
(i,j,t)∈H W t

ij is the sum of updated weights after the meetings, and vh :=



∑
(i,j,t)∈H(W t−1

ij + ε) is the sum of the original weights plus a fixed constant.
wl :=

∑
(i,j,t)∈L W t

ij is the sum of weights after the missed meetings, and vl :=∑
(i,j,t)∈L W t−1

ij is the sum of original weights. (Here we use zero as the default
value for W t−1

ij if j is not yet present in the network at time t− 1.)
Due to coupling from the pairwise interaction terms βiβj , the posterior prob-

ability distribution of βi cannot be written in a closed form. However, since βi

lies in the range [0, 1], one can perform coarse-scale numerical integration and
sample from interpolated histograms. Alternatively, one can design Metropolis-
Hasting updates for βi, which has the advantage of maintaining a proper Markov
chain.

The variables F t
ij and Gij are conditionally dependent given the observed

weight matrices. If a pairwise connection Wij increases from zero to a positive
value at time t, then i and j must either have a dyadic or a triadic meeting. On
the other hand, dyadic meetings are possible only when i and j are in the same
context, and triadic meetings when they are in different contexts. Hence F t

ij and
Gt

ij may never both be 1. In order to ensure consistency, F t
ij and Gij must be

updated together. For (i, j) ∈ TRIADt,

P (F t
ij = 1, Gij = 0 | . . .) ∝ I(Rt

i=Rt
j)

(βiβj)Poi(W t
ij ; γhε),

P (F t
ij = 0, Gij = 1 | . . .) ∝ I(Rt

i 6=Rt
j)

µijPoi(W t
ij ; γhε),

P (F t
ij = 0, Gij = 0 | . . .) ∝

[
I(Rt

i=Rt
j)

(1− βiβj) + I(Rt
i 6=Rt

j)
(1− µij)

]
I(W t

ij=0).

(13)

For (i, j) ∈ DYADt\TRIADt,

P (F t
ij = 1 | . . .) ∝ I(Rt

i=Rt
j)

(βiβj)Poi(W t
ij ; γh(W t−1

ij + ε)),

P (F t
ij = 0 | . . .) ∝ (I(Rt

i=Rt
j)

(1− βiβj) + I(Rt
i 6=Rt

j)
)Poi(W t

ij ; γ`W
t−1
ij ).

(14)

There are also consistency constraints for Rt. For example, if F t
ij = F t

jk = 1,
then i, j, and k must all lie within the same context. If Gkl = 1 in addition, then
l must belong to a different context from i, j, and k. The F variables propagate
transitivity constraints, whereas G propagates exclusion constraints.

To update Rt, we first find connected components within F t. Let p denote
the number of components and I the index set for the nodes in the i-th compo-
nent. We update each Rt

I as a block. Imagine an auxiliary graph where nodes
represent these connected components and edges represent exclusion constraints
specified by G, i.e., I is connected to J if Gij = 1 for some i ∈ I and j ∈ J .
Finding a consistent setting for Rt is equivalent to finding a feasible K-coloring
of the auxiliary graph, where K is the total number of contexts. We sample Rt

I

sequentially according to an arbitrary ordering of the components. Let π(I) de-
note the set of components that are updated before I. The posterior probabilities



are:

P (Rt
I = k | Rt

π(I), G) ∝

{
0 if GIJ = 1 and Rt

J = k for some J ∈ π(I)∏
i∈I θik o.w.

(15)

These sequential updates correspond to a greedy K-coloring algorithm; they are
approximate Gibbs sampling steps in the sense that they do not condition on
the entire set of connected components.

4.1 Parameter Learning Results

As a sanity check, we apply the parameter learning algorithm to a network
generated from the model. The hyperparameters are set to be those used in the
simulation, though in practice we find the Gibbs sampler to be robust to changes
in hyperparameter settings. The learning procedure quickly converges to a stable
set of parameter values. Below are convergence plots for γh, γ` and β for a small
dataset of 78 people in 10 contexts where links form and dissolve over 84 time
steps. The number of Gibbs iterations is 10, 000.

Figure 8 contains a scatter plot of the friendliness β parameters (mean of
the posterior vs. true values). Figure 9 contains the convergence plot and the
posterior distribution of γh and γ`. Note that, due to noise in the sampling
process, the γh values oscillate around the median of 1.90 (true value being
2) and γ` values have median 0.96 (true value being 1). We observe similar
convergence trends for θi and omit the figure due to lack of space.

Fig. 8. β parameter scatter plot. Fig. 9. The left-hand column shows con-
vergence plots of γh and γ` over Gibbs
sampling iterations. The right-hand col-
umn contains histogram of the sampled
values.



To test the interpretability of the model on real data, we learn the parameters
of DCFM on a real-life collaboration network. We have collected interaction
information, such as meetings and co-authorships, over 13 years for 120 people
connected to our lab. We omit the names of people due to anonymity constraints.
More information will be available in the full version of the paper.

Sampling results yield the median values of γh = 1 and γl = .02. This shows
that lab members either have steady collaboration patterns over time, or have
spurious interactions that quickly die off. We also find that the head of the
lab, who participates in most but not all of the collaborations, is quite friendly
with β = .86. Interestingly, the next most friendly person with β = .82 is a
student who is not the most prolific but has many co-authors. In the process
of parameter learning, we find that our original assumption of 10 contexts is
not enough to accommodate all the consistency constraints arising between R,
F , and G. Thus we increase the number of contexts to 20. Figure 10 shows the
learned context distributions of the above mentioned professor and student. The
two are mostly comparable except for contexts 7, 8, and 17. Assuming that the
contexts represent topics of study, the student is the most interested in 7 and
least in 17, whereas the professor has a rather uniform distribution over all fields,
most of all number 8.

Fig. 10. Context distributions of the two most “friendly” people in the co-authorship
network.

5 Possible Extensions

5.1 Evolution of Context Preferences

A person’s context distribution is influenced by the social groups to which he
belongs. People who are friends with gym-goers may start to frequent the gym



themselves. Thus it could be desirable to incorporate evolution of the θ parame-
ters (indicating context preference) into our model. We propose to update θ for
each person using the θ parameters of his neighbors, weighted by the connection
strengths:

θt
i = λθt−1

i + (1− λ)
1∑

j W t
ij

∑
j

W t
ijθ

t−1
j . (16)

The larger λ (a person’s independence) is, the less susceptible the person is to
the preference of his friends.

5.2 Long Term Memory

Weighted links capture the effect of short term memory; in our model, a link
established at time t will likely remain at time t + 1. However, once the weight
becomes zero, renewal of the link becomes is likely as a ‘birth’ of a new link.
To capture long term memory, we could model weights as a continuous gamma
distribution, so that established links always carry small residual weights. The
drawback is that the weight matrices will be dense, and we would need an ad-
ditional thresholding parameter for the ‘death’ of a link. Alternatively, at the
cost of introducing N new parameters, we can make each person ‘remember’ the
strength and duration of his past connections.

6 Related Work

The principles underlying the mechanisms by which relationships evolve are
still not well understood [7]. Current models aim at either describing observed
phenomena or predicting future trends. A common approach is to select a set
of graph based features, such as degree distribution or the number of dyads
and triangles, and create models that mimic observed behavior of the evolution
of these features in real life networks. Works in physics [8, 9, 10] and in social
sciences [11, 12] follow this approach. However, under models of average behavior,
the actual links between any two given people might not have any meaning.
Consequently, these models are often difficult to interpret.

Another approach aims to predict future friends and collaborators based on
the properties of the network seen so far [4, 7]. These models often cannot encode
common network dynamics such as mobility and link modification. Moreover,
these models usually do not take into account triadic closure, a phenomenon of
great importance in social networks [2, 13].

In [14], Sarkar and Moore present an interesting dynamic social network
model (with fixed number of people). This work builds upon a previous model
by Hoff, Raftery, and Handcock [15], which introduces latent positions for each
person in order to explain observed links. If two people are close in the latent
space, they are likely to have a connection. Hoff, Raftery, and Handcock estimate
latent positions in a static data set, whereas Sarkar and Moore add a dynamic
component by allowing the latent positions to be updated based on both their



previous positions and on the newly observed interactions. One can imagine
a generative mechanism that governs such perturbations of latent positions. In
fact, the DCFM model presented in this paper can be seen as a generative model
for the latent mapping function.

7 Discussion

Our focus on generative modeling in this paper is prompted by the need to
provide a plausible explanation for how networks form and evolve. It is flexible
and can be adapted to alternative theories of the friend evolution process. For
example, in our model, the decision to allow links to decay is made independently
on each pair. However, theory of Simmelian ties [16] suggest that two people who
are no longer friends may nevertheless remain so due to influence from a third
party. This is a plausible alternative to our current model.

Our choice of modeling weighted networks is motivated by the fact that
friednships between people are not binary. Stronger links tend to last longer
periods of time; temporary connections cease to exist once the cause disappears.
However, it is often difficult to obtain real datasets with weighted connections.
We propose to use the number of email, sms and phone call exchanges in preset
time intervals as a proxy to the weight of links between people. This is a very
coarse representation of a relationship weight, since non-communication does not
necessarily imply change in link weight. Hence the DCFM model may predict
smoother connection weights than the observed values.

To show that our model is capable of generating realistic social environ-
ments, we provide simulation results that adhere to observations made on real-
istic datasets in [17]. However, there is no groundtruth for the parameters in the
hidden layer. Variables that address context choice and meeting occurrance at
time step t have to be inferred from the previous and currently observed weights
alone. This brings up the question of identifiability. Unfortunately, the complex-
ity of the model makes it difficult to answer this question and we are currently
exploring possible solutions to this problem.

Another interesting question is exchangeability. The earlier a person appears
in the network, the more chances he has to establish connections. People who
have been in the network longer are expected to have more connections and thus
nodes (people) are not exchangeable over time.

The current model does not place any explicit upper bounds on the number of
links a person can establish. It is effectively limited by the number of people in the
same context. Unless a person is very friendly and has uniform distribution, the
number of links is not expected to be high. In realistic networks, we expect the
context preference distribution and friendliness to be skewed, because a person
has a limited amount of time and energy to build and maintain relationships.

In conclusion, we provide an exploratory study of a new generative model
for dynamic social networks in this paper. Simulation results demonstrate the
advantages as well as shortcomings of this model. In future work, we hope to
address issues of identifiability and investigate possible extensions of this work.
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