Practical Performance Models for Complex, Popular
Applications

Bjoern Doebel’
TU Dresden

Eno Thereska
Microsoft Research

ABSTRACT

Perhaps surprisingly, no practical performance models exist for
popular (and complex) client applications such as Adobe’s Cre-
ative Suite, Microsoft’s Office and Visual Studio, Mozilla, Halo
3, etc. There is currently no tool that automatically answers pro-
gram developers’, IT administrators’ and end-users’ simple what-if
questions like “what happens to the performance of my favorite
application X if I upgrade from Windows Vista to Windows 77”.
This paper describes our approach towards constructing practical,
versatile performance models to address this problem. The goal is
to have these models be useful for application developers to help
expand application testing coverage and for IT administrators to
assist with understanding the performance consequences of a soft-
ware, hardware or configuration change.

This paper’s main contributions are in system building and per-
formance modeling. We believe we have built applications that are
easier to model because we have proactively instrumented them to
export their state and associated metrics. This application-specific
monitoring is always on and interesting data is collected from real,
"in-the-wild" deployments. The models we are experimenting with
are based on statistical techniques. They require no modifications
to the OS or applications beyond the above instrumentation, and no
explicit a priori model on how an OS or application should behave.
We are in the process of learning from models we have constructed
for several Microsoft products, including the Office suite, Visual
Studio and Media Player. This paper presents preliminary find-
ings from a large user deployment (several hundred thousand user
sessions) of these applications that show the coverage and limita-
tions of such models. These findings pushed us to move beyond
averages/means and go into some depth into why client application
performance has an inherently large variance.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Measurement techniques,Modeling
techniques,Design studies]

*Work done while interning at Microsoft Research, Cambridge,
UK.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMETRICS’10, June 14-18, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0038-4/10/06 ...$10.00.

Peter Nobel
Microsoft

Alice X. Zheng
Microsoft Research

General Terms

Design,Management,Measurement,Performance

Keywords

Performance variance, what-if, developers, IT administrators

1. INTRODUCTION

Understanding tradeoffs between application performance and
hardware, software, and environment configurations is important
for developers and IT administrators. These tradeoffs are known
as a "performance model". Developers, for example, need perfor-
mance models to anticipate and iron out performance anomalies
for applications that run on diverse configurations. Developers cur-
rently rely on in-the-lab tests to obtain these models. For popular
applications, which are often used by thousands of clients, data on
how the application is behaving "in-the-wild" is not channeled back
to them. IT administrators, too, need models to anticipate any per-
formance effects of an upgrade (e.g., moving from one operating
system to another, or moving from SCSI disks to SATA disks). Cur-
rently, they use their experience, rules of thumb, benchmarks (with
well-known limitations [24]) and staged rollouts to make educated
guesses on any performance impact. Global experience from other
administrators upgrading similar systems is at best passed through
word-of-mouth, e.g., from colleagues. Its collection is not auto-
mated in any way.

The lack of a global “tradeoff database” is a wasted opportu-
nity that leads to multifaceted frustration: end-users and IT admin-
istrators have to resort to vague description of their performance
concerns on support web sites; developers miss crucial informa-
tion about application usage that could guide them towards better
testing and improved performance.

This paper focuses on performance models for popular, and often
complex, client applications, for example Adobe’s Designer suite,
Microsoft’s Office suite and Visual Studio, Mozilla, etc. Unlike
enterprise applications, the applications we target do not have ex-
plicit service-level agreements (SLAs). Their performance is usu-
ally judged relative to how other peers are performing, as long as
they remain responsive to the user. Thousands to millions of peo-
ple use popular applications, thus the hypothesis of this paper is
that the law of large numbers helps in their modeling. We postu-
late that these applications can be modeled implicitly, by a tool that
(carefully) observes their behavior while deployed. We believe ad-
dressing this problem is both important (impact would be felt by
millions of users) and technically challenging.

The modeling infrastructure we are working on, called App-
Model, monitors the behavior of an application on a machine, and
how the same application behaves under different configurations

on different machines. AppModel collects performance signatures
for each application, which include not only OS-specific metrics
(usually collected in state-of-art approaches like [4, 9]), but also
application-specific performance counters and characteristics of the
workloads the application is processing, e.g., file size, file type, im-
age resolution, etc. We show the necessary (small) changes that can
be released as a patch to enable these applications to export these
metrics. AppModel then builds performance models automatically,
using regression techniques, and helps with their interpretation.

1.1 Usage scenarios

Here we illustrate how AppModel could be used by application
developers and system administrators.

Application Developers: A developer might ask AppModel
“what happens to performance of application X if I use configu-
ration C?” C might be a set of configuration attributes the devel-
oper is interested in, e.g., C = {#CPUs = 4,CPUarchitecture =
64bit, OS = WindowsT, ...}. The developer might have tested C in
the lab, but wants to know the performance experienced by real
users. Or perhaps the testing has not been done yet, e.g., C might
be expensive to set up and the developer wants to know if there is a
problem before making the purchase.

AppModel takes C, iterates efficiently over all existing configu-
rations in the field similar to C, and provides a distribution on how
users with C experience performance (end-to-end, or for individ-
ual application states, e.g., for application startup). If the results
are unexpected, the developer might proceed to replicate them. For
certain configurations that exhibit large performance variance, the
developer might want AppModel to do a delta analysis of perfor-
mance metrics from the best and worst performing scenarios to un-
derstand why. Sometimes the performance variance might be ex-
plainable, e.g., high contention from other applications. If not, the
developer might want to initiate a performance debugging session.

IT administrators: An administrator might ask AppModel
“what happens to the performance of the top-10 popular applica-
tions I support if I migrate to a new release of an OS?”. The ad-
ministrator might also ask what-if questions to understand the ef-
fect of hardware upgrade decisions (e.g., "What happens to perfor-
mance if I double the amount of memory?") or to understand the
effect of configuration changes (e.g., "What happens to overall per-
formance if I use a particular virus scanner?"). The administrator
simply poses these questions without having to purchase the new
hardware or software.

AppModel is designed to continuously collect local historical
data, before the question is asked, on how users this administra-
tor is responsible for interact with the top-K applications. This data
could include which buttons they click on most, or which states
dominate end-to-end performance. AppModel takes that data to-
gether with the desired new configuration C', which includes all
existing attributes plus the new OS version number and consults
global data on how users with configurations similar to C" perceive
their application performance. AppModel then makes a prediction
to the administrator. The prediction takes the form “average end-
to-end performance will not degrade or improve, but performance
variance will increase by 10%”. The IT administrator would then
decide on the upgrade.

1.2 Contributions

This paper describes the challenges and results from making
such a modeling framework a reality. We make the following con-
tributions: first, we develop a performance modeling framework for
popular client applications. This framework does not rely on com-
plex understanding of the applications or operating system. Sec-

ond, we show how we have instrumented several popular applica-
tions to export necessary state metrics and workload characteristics.
Third, we perform a feasibility study for AppModel using two ap-
proaches. Initially, we present preliminary results from a large user
deployment (hundreds of thousands of users), but with a limited set
of performance metrics collected. The data from this deployment
is in active use by real developers and testers of the applications
under consideration. For sensitivity studies and validation we use
synthetic tests from a handful of users with a much larger set of
metrics collected.

2. MOTIVATION AND RELATED WORK

Understanding application performance is important for devel-
opers in our company. We also wanted to understand how our
modeling infrastructure could potentially help IT administrators.
Hence, we conducted a small survey (the raw survey results can be
found at [1], below we distill what is relevant for this paper).

2.1 IT administrator survey

We asked members of the Usenix SAGE and System Adminis-
trators LinkedIn mailing lists to answer some questions on system
performance. We received replies from 38 system administrators,
24 of whom maintain large system setups with more than 40 ma-
chines. 28 of the participants have 5 or more years of experience.
When asked to rank their main concerns, understanding and fix-
ing performance problems ranked as high as all other concerns, in-
cluding keeping software up-to-date, applying security patches and
backing up the data.

Figure 1 shows the results for three performance-related ques-
tions to the administrators. When asked whether they knew the
potential performance impact of an software or hardware upgrade
beforehand, 16 of the 38 administrators answered “no”. We then
asked the administrators about how they perceived and understood
performance. Most of them said they were using some form of rules
of thumb, based on their own or their colleagues’ experience, when
trying to assess performance. Many of them (18) also use sim-
ple benchmarks (e.g., bonnie++, httperf, Imbench) and monitoring
tools to assess system behavior. It is well-known that benchmarks
are not good for addressing application-specific performance con-
cerns [24]. Monitoring tools (e.g. top, iostat) and tracing tools
(e.g., rrdtool, OS performance counters, SystemTap) provide mea-
surements and visualization of the current system configuration
and performance. They cannot be used to flag anomalous behav-
ior among computers with the same configuration. They can also
not be used to predict performance under different configurations.
Several administrators’ understanding of performance was based
on end-user experiences, which referred to complaints aggregated
by email and web-forms.

The results confirmed that performance is important, and that
the administrators made extensive use of local knowledge. The
administrators did not have any framework or tools to automatically
aggregate global knowledge beyond complaints on emails and web-
forms. It is important to note that this is a small survey and it may
be affected by self-selection, bias of the volunteers and coverage
problems. Nonetheless, we believe the results complement those of
other administrator surveys (e.g, [11] on failures during upgrades),
though our focus is on performance.

2.2 Contrast with related work

We contrast our work to related work along five axis.

Performance modeling vs. performance debugging: The pri-
mary contribution of this paper is on novel, practical ways to do
performance modeling, with a secondary focus on performance de-

Monthly

Bi-weekly

Weekly

Daily

0 5 10 15 20
(a) How often do you upgrade hardware and software?
End-user
experiences

Perf-analysis
software |

Benchmarks

Self-built
tools

0 5 10 15 20 25 30
(b) Kind of performance modeling tools used

No

0 5 10 15 20 25

(c) Do you know the performance effect of an upgrade?

Figure 1: A survey of IT administrators.

bugging. Performance modeling answers what-if questions like
the ones above. Performance debugging analyzes performance dis-
crepancies. Most related work has focused on performance debug-
ging [2, 3,4, 5, 8,9, 10, 22, 23, 25, 26]. Performance modeling
helps performance debugging by providing a notion of "expected"
behavior. After a what-if question is answered and the recommen-
dation enacted upon, performance might not be what it was ex-
pected. To help understand why, AppModel matches the state-of-
art [4, 9, 10] by performing a delta analysis between application
deployments that perform well and those that do not.

Black-box vs. white-box modeling: There has been consider-
able recent work done on performance modeling (e.g., see [14,
18, 27]) which augments a well-known body of literature [15, 17].
The spectrum of modeling approaches ranges from “white box”
to “black box”. Our approach falls in-between. We use developer
knowledge to understand what parts of an application to instrument
(we have full control over our applications), and black-box, statis-
tical algorithms to answer what-if questions. Some of these algo-
rithms involve, for example, regression and linear least squares fits.
We do not make any new contributions in statistical methods but
we report on subtleties in making them work in our context.

System building vs. measuring: This paper is interested in how
to build applications that export relevant state and performance
metrics. The systems we consider can be legacy systems, but we

expect them to be actively maintained, i.e., patches can be issued at
any time. We will require some minor changes to the applications.
Indeed, all the real applications we consider in this paper made the
changes required incrementally. Hence, we go beyond merely mea-
suring what is there (usually metrics exposed by the OS [4, 9, 10])
to actively building applications to provide more insights.

Methodology: Most of the above performance debugging pa-
pers establish a level of normalcy by observing one system over
time. AppModel observes many systems over time. Hence, App-
Model can explore how an application would run under different
configurations. The approach of using observations from many sys-
tems is most closely related to PeerPressure [29] and Clarify [13].
Both share our method of leveraging deployed machines for statis-
tical analysis, but both have an orthogonal goal of troubleshooting
computer misconfigurations and errors. Performance modeling has
other challenges. Performance is time-varying, and depends on in-
teractions among many configurations (hardware and software) as
well as workload characteristics.

There are existing performance tradeoff exploration techniques,
which range from in-the-lab scenario-based tests and benchmarks
to staged upgrades. Staged upgrades are used to gradually roll out
a new upgrade with minimal impact to the users [11]. Fundamen-
tally, staged upgrades require the new hardware or software to be
purchased and do not allow administrators to explore answers to
what-if questions before committing to buying anything.

Targeted systems (and non-targets): We target popular client
applications with no particular service level agreements. Applica-
tions that can be exhaustively tested in-the-lab will not benefit from
AppModel. Our approach will not work well for highly-customized
applications or those with few deployed instances, for example fi-
nancial applications for large banks with only tens of deployments,
or applications which only run in a handful of data centers [5, 27].
This is because no statistical confidence can be obtained from ob-
serving only a handful of deployments and configurations.

3. APPROACH

3.1 Overview and challenges

Figure 2 illustrates the architecture of AppModel. From a top-
down point of view, an administrator or developer poses what-if
questions to AppModel. These questions take the form “What is P
for application A, for configuration C?”. P is a performance metric
(throughput, latency, full distribution or average), A stands for the
name of the application, and C is a set of computer hardware and
software configuration attributes/parameters. AppModel returns P.

From a bottom-up point of view, AppModel has several logical
steps. First, a tool continuously monitors the local performance of
each popular application. There are two challenges here: decid-
ing how to define an application’s performance and deciding what
parts of the application to monitor. Unlike simplistic benchmarks,
an application might have hundreds of states which consume dif-
ferent resources. For interactive applications like Microsoft Office,
Adobe Photoshop, etc. the state is dictated by the history of user’s
button clicks. AppModel monitors the time spent in that state, re-
sources consumed and characteristics! of the workload, e.g., the
size of the file being worked on. In addition, for each hardware
resource, its utilization by other applications is also recorded.

Second, the local information is sent to a central database where
it is aggregated. Our current implementation places this database
with the company that produces the application and cares about un-

CLNNTS

'In this paper we use the terms workload “characteristics”, “at-
tributes” and “parameters” interchangeably.

7 application-specific
What.“m entral database

Attribute
relevance
filter

Similarity i -
™ search [“LInterpretation

peer device A—

peer device

Figure 2: A developer or administrator poses what-if questions
to AppModel. AppModel continuously collects performance
signatures on how peer devices are performing. AppModel then
answers what-if questions quantitatively and provides fidelity
metrics with them.

derstanding its performance (e.g., Adobe, Google, Microsoft, etc.)
If the administrator cares about many applications, s’he will have to
send separate what-if queries to the respective databases. The main
challenge is to maintain privacy. Users can choose to opt-in and
periodically transmit performance signatures. The exact privacy
agreement for our deployment is shown here [20]. Performance
signatures do not contain any user-identifiable information, as will
become clear in this section.

Third, a statistical model is built for each what-if question. Log-
ically, the modeling component has several parts, each with subtle
complexities that do not have simple "off-the-shelf" solutions. We
only give an informal overview here. A first challenge is to de-
termine for each what-if question the set of most relevant configu-
ration attributes that have traditionally had strong correlation with
performance. This set is likely to be different for different what-if
questions. We construct an attribute relevance filter that filters out
the irrelevant attributes. A similarity search module then searches
for machines with configuration most similar to the initiator’s ma-
chine. The intuition here is that it is very likely someone already
has the configuration the initiator desires. To perform the similar-
ity search it only considers the relevant resources indicated by the
attribute relevance filter. The behavior of the application under con-
sideration is analyzed for each of the most similar machines. The
average performance, as well as the entire probability distribution,
is returned to the initiator.

A final challenge is interpreting the results and differentiating
between expected and unexpected variance in performance. The
interpretation module is triggered if the initiator wants to perform
a delta analysis between the worst and best-performing machines
for a given what-if question. The interpretation module performs
the analysis automatically and returns a set of attributes for the ini-
tiator to examine, together with annotations on whether the delta
indicates an anomaly.

3.2 Performance signatures

We borrow the term performance signature from Cohen et
al. [10]. In this paper we extend it to mean not only a collection of
operating system (OS) performance counters, but also a collection
of application metrics, workload attributes and general computer
configuration attributes. AppModel collects signatures during an
application state. A state can be defined at different semantic lev-
els. A single method can be thought of as a state. For interac-
tive applications that require, for example, the clicking of a button

on the application menu, a state can be defined as the collection
of methods invoked between the time a button is clicked to when
the action completes. Different states might have different resource
consumption needs, e.g., one state might be CPU-bound (e.g., when
performing an arithmetic calculation), another might be disk-bound
(e.g., when saving a file to disk). Ignoring these distinct states and
treating an application as an “average” of its states provides little
insight on what the performance model means.

AppModel requires developers to expose the time it takes to be
in a state. Developers can do so by recording a timestamp at the
entrance and exit points of a state. Figure 3 illustrates an example
instrumentation for a popular spreadsheet application (Microsoft
Excel) for the “File Save” operation. The library that collects the
data is straightforward and can be released as a small patch to a
legacy application. As described in Section 4, many user-visible
states in our applications are instrumented using this approach.

The application should also expose relevant workload attributes.
For example, the time to complete a “File Save” operation probably
depends on the type and size of the file. Exposing the right work-
load attributes can be difficult and requires developer experience.
This process cannot be automated and is iterative, but AppModel
can help. After the developer exposes several attributes, AppModel
automatically correlates them with performance and gives feedback
to the developer on the attributes’ relevance. Developers remove at-
tributes that are found irrelevant in the long term.

Most operating systems provide basic utilization performance
counters per application, per resource, such as “disk writes/second”
or “disk queue length”. We call these counters “dynamic attributes”
throughout the paper because they are time-varying. We also col-
lect general computer configuration attributes, e.g., “disk type” or
“OS version”. We call these attributes “static”.

3.3 Formalizing the modeling problem

For modeling purposes, we define an application session as a
sequence of states i (with possible repetition of states, e.g., File
Open, File Open, File Close, File Close) from the time a user starts
the application until the user quits it. Let L; be a random variable
representing the latency incurred in state i. Overall application per-
formance P could thus be written as P = Y.} | L;. There are two
details however. State i might be partially concurrent with state j
and the overlap time needs to be subtracted. Also, L; might depend
on Lj, i.e., in practice states might not be independent. The data
we collect allows for a conditional probability table (with entries
L;|L;) to be populated.

Answering a what-if question means providing P for an applica-
tion A for a given configuration C. The next sections show how L;,
and thus P, is related to C. The applications we model are interac-
tive, thus the focus on latency. The same approach would work for
modeling throughput, where L; would represent throughput.

3.3.1 Attribute relevance filter

The relevance of an attribute g; in the configuration C depends on
the what-if question. For example, the answer to a question con-
cerned with upgrading hard drives is more likely to be correlated
with attributes such as “memory size” and “average disk queue
length” than with attributes such as “CPU speed” and “network
queue length”. Thus, L; is a function of the performance character-
istics, or attributes, of that application and its resources:

Li=F(ay,...,an) 1)

It is this function F that AppModel approximates globally using
peer machines. The data available to make the approximation is
like the table part of Figure 3. The table is large however, as it con-

&= = Bc

ﬁ Home Insert Page Layout Farmulas Data Review
—= ¥ - —_
£ = Calibri 11 r A4 =
=3 . _
Pa’te ¥ B 7 U~ v | Sy é - | =

Clipboard Font Alignment

Static attributes | Dynamic attributes | Application attributes

OS #CPUs... CPU util _disk util ... |save time _file type file size
Win 7 4 10% 20% 100ms xls 4MB
Win7 4 0% 10% 150ms xls 8MB
Win7 4 60% 80% 180ms xls 1MB

Figure 3: Three possible performance signatures (captured in
three rows) when users click three times on Microsoft Excel’s
File Save button. File save time is what is being modeled as a
function of all other attributes (columns).

tains data from all reporting users. AppModel uses a classification
and regression tree (CART) [7] to do the approximation. CART
is similar to the TAN models used by Cohen et al. [9], and we
believe either can be used, but we have experimented with CART
only. CART assigns each attribute an entropy-based weight that
determines how correlated that attribute is with performance. We
provide a brief sketch below of how this is done.

CART induces a model as follows. For each attribute g; in the
data collected, CART determines the entropy of the observed data
when that attribute is chosen to split the data. CART chooses the
attribute that leads to the lowest entropy. Intuitively this means that
data is partitioned into bins where each bin has as little variance
in its values as possible (in the best case, all the values in the bin
are the same). CART continues this process recursively, until all
attributes have been placed in a tree. This process implicitly asso-
ciates a weight v; with each attribute g;. The default weight is de-
fined as the normalized information gain of that attribute [21](pages
55-60). We have found working with CART is an iterative process,
far from the ideal of being fully automatic. It involves a trial-and-
error process with adding or removing some attributes that, in our
context, stems from the standard correlation vs. causality problem
(an example is given in Section 5.2). Mitchell describes several
such open questions in his book [21](chapter 3). We do not discuss
them further in this paper.

Figure 4 shows a portion of a tree that models high-level applica-
tion throughput as a function of several attributes. The application
itself is described in Section 4.2. The top-3 attributes CART has
chosen are “Write bytes/s”, “Read bytes/s”” and “CPU utilization”
of the process. Hence, the disk resource and CPU resource are most
related to throughput, and the other 100+ attributes can be ignored.
Overfitting of regression trees is a concern [21](page 66). Ideally,
the regression trees should not be too deep. Pruning and cross-
validation, which are standard techniques against overfitting, work
well, and as Section 5.4 shows, the depth of trees can be small (less
than 10 levels deep).

Training time for CART is O(t.Height(t)) and predictions take
O(Height(t)) time, where 7 is the number of observations (i.e., the
number of rows in the global table in Figure 3) and Height(z) is
the depth of the regression tree. CART can handle mixed-type at-
tributes (e.g., continuous and categorical values) and can learn in-
crementally from new data. Furthermore, the structure of a CART
tree can often be human-interpretable, although in practice we find
that the human has to be a domain expert.

Throughput
(blocks/sec) f&———— metric predicted

Write bytes/sfjq———— relevant attribute
'

[]
<1.31179E7 =1.31179E7

Write bytes/s CPU util %
<3664490.0 >3664490.0 <13.0896 =13.0896
| | [[
(B0D.863213 Read bytes/s (6492.786368 [(10498.9233

—
<7613660.0)) >7613660.0

—— fraction of data

stdev
(around mean)

ol [)
2480.23 B106.9 € predicted value

Figure 4: Example CART-based attribute filter. Visualization
is done with a regression tree viewer [6].

3.3.2 Similarity search

After filtering irrelevant attributes, several subtle steps take place
next. First, dynamic attributes are replaced by their static counter-
part. A dynamic attribute usually has many static attributes asso-
ciated with it. For example, if CART picks the dynamic attribute
“CPU utilization” as relevant, AppModel converts that to the static
attribute(s) “CPU type” and “CPU speed”. To avoid introducing
new notation, we call static attributes also ay.

Dynamic attributes are not used in this step, because compar-
ing them requires a further normalization function. For exam-
ple, should a machine with a 2GHz CPU and 10% utilization be
equivalent (with respect to application latency) to a machine with
a 1GHz CPU and 20% utilization? Theoretically, this question can
be answered if one has much training data covering many resource
utilization scenarios. With the current deployment we have good
coverage of static attributes, but not dynamic attributes. Hence, it
remains future work to verify whether such normalization is possi-
ble. We exploit dynamic attributes only for the interpretation phase
(Section 3.4) and use static attributes for similarity search.

Second, the top-K most relevant static attributes are selected and
their local weights (calculated as the maximum weight of the dy-
namic attributes) are averaged to assign a global weight. To avoid
introducing new notation, we call this global weight also v;, but
the context will make it clear whether the weight is local or global.
K is determined empirically. Sensitivity studies indicate that K is
usually less than 20.

After selecting the most relevant static attributes and assigning
a weight to them, we define the distance between two computer
configurations C; and C; as:

DGy =T ,;1 ved(ar(Ci),ax(C)))?) @)

where a;(C;) denotes the value of the k" attribute of configuration
C;. The function d defines a (normalized) distance metric among at-
tributes. The choice of a distance metric is subjective. For example,
what should be the distance between two operating system versions
(the “version” attribute)? One possibility is to set the difference
to 0 if the versions are identical and 1 otherwise. Another possi-
bility is to have earlier versions incur a larger distance from the
current version than the latter versions. In theory, cross-validation
could automatically select the best distance function among several
candidates [21](page 235). The mileage varies however, and is a
function of how many test cases are available. For some resources

we do the obvious subtraction (e.g., CPU frequency), for others we
subtract the version number (e.g., OS version).

We are also experimenting with having a set of standard tests as-
sign a score to certain resources. These tests benchmark resources
either at OS install time or whenever a user explicitly instructs the
OS to do so. The exact method to do that currently ships with
the Windows OS, and forms part of the Windows Experience In-
dex [30]. The benchmarks represent common workloads the hard-
ware devices are expected to handle well. For example, to normal-
ize two hypothetical disks, one from Seagate and one from Hitachi,
a benchmark that reads and writes sequentially from the disk is
run on the disks and the throughput is measured. The throughput
is then normalized to a score between 1 and 7.9 (the score range
might change with subsequent releases of Windows). It is impor-
tant to note that these benchmarks are written by domain experts.
For example, storage experts know that to characterize a disk one
needs to measure at least streaming and random-access through-
put and latency. Other measurements might be important too (e.g.,
the above metrics as a function on number of requests in the disk
queue) and might be added in future releases.

In theory, these tests are not needed for our modeling frame-
work, since thousands of users “test” their hardware by virtue of
running their applications. However, in practice, these tests estab-
lish a notion of normalcy and expected behavior with higher con-
fidence then statistical methods. These tests are used to bootstrap
the similarity search problem by getting started with a reasonable
function d. After the score is assigned, the distance between two
resources is:

d(ar(C;),ar(Cj)) = score(ai(C;)) — score(ar(C;)) 3)

Third, the latency distribution from a number of similar config-
urations is returned to the user. This is fundamentally a nearest-
neighbor problem. We do not have any new insights on selecting
the right number of neighbors to look at beyond what Mitchell de-
scribes [21](chapter 8). AppModel can help visualize relationships
between latency and each of the configuration attributes by per-
forming linear least squares fits, for example.

3.4 Interpretation

After a prediction is made, AppModel can provide interpretation
for the developer to better understand the data. The interpretation
step uses dynamic attributes, which capture how applications use
the available resources over time. In addition to visualization over
time on many machines, the interpretation step can perform a delta
analysis of relevant attributes for best and worst-performing config-
urations. For example, Table 1 shows two performance signatures
for one application (described in Section 4.2), whose performance
suffers under configuration C;. The difference between the two sig-
natures is the total disk utilization. The developer should interpret
this delta as a result of contention for disk by another application
(i.e., nothing is inherently wrong with C;, but the user has too many
applications open).

Section 5.3 describes our findings of several performance sig-
natures and deltas for common sources of performance variance,
ranging from contention with other applications to garbage collec-
tion by the common runtime (such as .NET). The goal is to have the
deltas be annotated once and the annotation then would be made
available to developers experiencing similar problems.

3.5 Summary and limitations of approach
Answering a developer or administrator what-if question, for ex-

ample, “what happens to performance of application X if I use con-

figuration C?” first requires the attribute relevance filter to deter-

Sig; :< Total disk util = 80% , App X disk util = 20%, ... >
Sig; :< Total disk util = 20%, App X disk util = 20%, ... >

Table 1: Two simplified performance signatures. The differ-
ence between them is highlighted in bold.

mine which configuration attributes are relevant. Then, all com-
puter configurations similar to C are examined and the latency dis-
tribution is returned as an answer. Enabling this technique to work
requires two subtle modeling approaches: partitioning of the at-
tributes into static and dynamic ones and assigning normalization
scores to hardware resources by running a set of standardized tests.
The interpretation step is designed to help differentiate between ex-
pected and unexpected variance in performance and is crucial for
deeper understanding of performance. The important takeaway is
that annotations made by one developer to get a semantic under-
standing of the performance discrepancies can be used by others.

All the above modeling and interpretation requires novel appli-
cation instrumentation. For interactive applications, we have iden-
tified the right points of instrumentation as being the entry and exit
from a user-induced action (e.g., clicking of a button). Developers
instrument application states iteratively. The information learned
from AppModel is designed to feed back into a refinement of the
iterative instrumentation.

A limitation of this modeling methodology is that its success and
fidelity depends on the application being popular and used on many
computers with diverse configurations. AppModel cannot answer
what-if questions on configuration that have never been seen in the
field. The use of the term “model” usually implies capability to cal-
culate performance estimates for any configuration; as such we use
this term in this paper loosely. Another current limitation is that we
do not explore ways applications might interact? with one another,
but only focuses on individual states in individual applications.

It is important to note that delta analysis in the interpretation step
is not root-cause analysis. Root-cause analysis might require hu-
man understanding at various semantic levels of the system. How-
ever, delta analysis can help guide the developer’s attention to re-
sources that exhibit the largest performance discrepancies and is
often the first step in a performance debugging session. A possible
second step in the debugging process would be to collect detailed
system call and kernel traces from the user and send them to the
developer whenever the current performance signature matches an
annotated one. This is beyond the scope of this paper, but is dis-
cussed further in Section 6.

4. MEASUREMENT METHODOLOGY

This section describes the sources of measurements. These mea-
surements are inputs to the models.

4.1 Real data collected

This subsection describes the two sets of real data we collected.

In-the-wild performance data: The first set of data captures
information about several popular applications whose user-facing
buttons have been instrumented over several months. They include
a popular word processing, spreadsheet and presentation software
package (Microsoft Office), a media player, an email client (Out-
look) and a code editing and debugging software package (Visual
Studio). All these applications are in use by thousands of users.

2We differentiate “interaction” (e.g., one application induces a win-
dow to open in another) from simple resource contention among
applications which we do model.

There are more than 7,000 instrumentation points in these applica-
tions. The data collected is available to our developers through a
database’s SQL interface.

The data is obtained from users who have opted-in to make it
available by agreeing to the privacy statement [20]. Device and OS-
specific attributes collected include hardware configuration (mem-
ory size, number of CPUs, speed of CPUs, etc.) and software con-
figuration (operating system version, software versions, etc.) Sec-
tion 5.1 explains data coverage and limitations. A local instrumen-
tation library buffers data every time a user clicks on a button and
the performance signature is recorded locally. Periodically the data
is transmitted to a centralized database. AppModel makes predic-
tions by using the data stored in the database.

There are several limitations to this data set. First, the data is bi-
ased towards users who choose to opt-in. These users might not be
representative of the overall user population. Second, the attributes
from the OS are not correlated with the attributes collected from
an application. For example, an application session might be ex-
periencing high latency because the OS resources (e.g., disk) are
heavily used by the kernel or by another application. Because of
this limitation, this first data set will not provide interpretations for
sources of performance variance. Third, currently not all available
OS performance counters are collected. A reason for the above
limitations is that this feasibility study is part of ongoing research.
Many of these limitations will be addressed with the next few ver-
sions of the software, but the timing is dependent on release cycles.
Despite the above limitations this data will still be interesting for
understanding trends and thus answering what-if questions.

In-the-lab data: The second set of real data is shared by the real
developers and testers of Visual Studio. Several hundred scenario-
based tests are performed in the lab and latency is reported. The
scenarios include start up time, project debugging, project building,
etc. Each test is run four times on one machine (thus this data is not
useful for what-if predictions). Several OS-specific performance
counters are collected. This data is helpful for interpreting sources
of performance variance.

4.2 Synthetic data for validation

It is difficult to perform sensitivity studies and understand root-
causes of performance variance without having direct access to
the population’s computers. Hence, we use a synthetic applica-
tion and a handful of local computers to validate the interpreta-
tion of sources of performance variance and explain the results bet-
ter, albeit with very simple scenarios. The synthetic application
has three states after startup: a CPU, disk and a network-intensive
states. During the CPU state the application performs mathemat-
ical tasks that keep the CPU close to fully utilized. During the
disk and network states the application writes out a 1.2GB file in
4KB chunks and then performs random-access 4KB read and write
requests within it, with a read:write ratio of 1:2. In the network
state, the file is written sequentially to a secondary computer over
a 55 Mbps wireless network.

The latency of each state is monitored, together with many OS
performance counters exported by Windows. There are two users
of this application with machine configurations as shown in Table 2.
This application is sometimes run in isolation and other times to-
gether with common desktop applications such as browsers, code
editing, LaTex, music player, virus scanner, etc.

S. EVALUATION

This section is formed as a series of hypotheses and evidence in
their support. The setup for each case study makes it clear which
deployment scenario is used.

Attribute Machine 1 | Machine 2
#CPUs 2 2

CPU architecture | 32 bit 32 bit
CPU score 5.1 5.3
Memory score 4.8 5.5

Disk score 5.9 5.5
Graphics score 4.7 4.6
Gaming score 53 4.2

Table 2: Relevant machine attributes for synthetic application.
The distance metric D between these computers can only be
defined as a function of the what-if questions asked, and we
will show an example in Section 5.3.

5.1 Measurement coverage and limitations

This subsection provides a visual glimpse into what is collected
in-the-wild during a period of 90 days. Below we discuss the cov-
erage and limitations of these measurements.

Hardware configuration: Figure 5(a) shows the number of sam-
ples collected as a function of CPU speed and memory size. Other
hardware configuration collected (but not shown) includes storage
configuration, graphic card configuration, network card configura-
tion etc. Figure 5(d) shows the normalization score assigned to the
graphic card as a function of several tests performed on it, as de-
scribed first in Section 3.3.2. The score is a single number that is
representative of the capabilities of that device for common tasks.
Currently, running the necessary tests to obtain a score needs to
be done manually, and hence not every user reports them. We are
working on automating that part.

Software configuration: Figure 5(c) shows an example soft-
ware configuration, the OS version number and application version
for a popular code editing software package (Visual Studio). We
are currently not making use of software configuration files (e.g.,
XML files that describe configuration data for an application or
registry entries), although collecting this data would be straightfor-
ward with our infrastructure. In general, we find that collecting
software configuration is more involved for developers and users
of our infrastructure than collecting hardware configuration. It re-
quires collecting a list of obvious (e.g., registry and version ID) and
non-obvious (e.g., hard-coded parameter in code) configuration en-
tries. Hence, in practice this step is iterative.

Workload characteristics: Capturing hardware and software
configurations is only part of the data needed for modeling. The
other part involves understanding the inherent demands that a work-
load places on the system. Figure 5(b) shows two example work-
load characteristics captured, the file type and bitrate for files played
through a popular media player package. Of course, the perfor-
mance of the media player depends on these characteristics. We
find that identifying and collecting the right workload characteris-
tics is an iterative process.

It is worth keeping in mind that the representation of the config-
uration space is a cross-product of all the above graphs and cannot
be visualized in two dimensions. What works to our advantage is
that, for the kinds of what-if questions we have looked at, only a
few dimensions mattered (usually less than 20).

5.2 Modeling scenarios

This section uses the in-the-wild performance data to model sev-
eral aspects of the client applications, for developers and IT admin-
istrators. The hypothesis in this subsection is that AppModel can
create meaningful trends.

1.0E+06 ¢

1.0E+04

#Samples

1.0E+02

1.0E+00
0

OISCl; 52 5e |
U Speeq (Ghz)

(a) Hardware config: CPU speed and memory size.

1.0E+08

1.0E+06

1.0E+04

Samples

1.0E+02

1.0E+00
App 1| App 2| App 3| App 1| App 2| App 3|App 1| App 2| App 3| App 1| App 2| App 3

051 052 0s3 054
OS and application versions

(c) Software config: OS and application version (anonymized).

1.0E+08

1.0E+06

wv
Q
[
E 1.0E+04
©
w
++ 1.0E+02
1.0E4+00
=|3/€=5/3/8=8 =8 =2 ¢E=2e=2ezs8esBE
NE;NEENEENEBNEEMEENEENEENEE
less than | 32000- 48000 64000 96000- | 128000- | 160000- | 192000- | 256000
32000 bps 47999 bps 63999 bps 95999bps 127999 | 159999 | 191999 | 255999 | bpsand
bps bps bps bps above
File type and bitrate
(b) Application workload characteristics.
10000
9000
8000
v 7000
2 6000
o
€ 5000
A
4000
H
3000
2000
1000
0
Q - MmN O MmNy G MmN NG—Mmin N
- N N N N AN MmN onom T T T T T NN N NN

Graphics score
(d) Baseline performance.

Figure 5: Configuration space for a subset of 4,924,467 user sessions (periods between a user starting an application until the user
quits it). A single user might have many sessions, but to preserve privacy no user-identifiable data is kept. Hence, we cannot report

on the number of unique users these sessions correspond to.

Modeling startup time: Suppose a developer wants to speed
up the startup time (i.e., only one state) of a popular email client
(Microsoft Outlook). After tests in the lab, the application is even-
tually deployed and the developer wants a model of the startup time
in the field. The developer asks AppModel to give a distribution of
startup time as a function of the top-3 relevant attributes. We show
several of the steps involved through this simple example.

First, from the instrumentation step, every time Outlook starts up
several attributes are collected (OS metrics indicating resource uti-
lization, application-specific metrics like size of inbox, etc). Sec-
ond, the attribute relevance filter uses a CART model to rank the
top-K attributes relevant for predicting start up time. In our exam-
ple, the model might indicate that the top-3 attributes are amount of
available memory (RAM), CPU frequency and number of emails in
the inbox. Third, given that the developer only wants to see a broad
distribution of startup time (rather than for a particular computer
configuration), there is no need to do the similarity search step.

Figure 6 shows the results. A linear least squares fit is overlayed
on the median startup times. We make several observations. First,
the number of emails in the mailbox is likely to make the biggest
difference in application startup time. Second, memory size and
CPU speed appear to both be correlated with startup time, though
the correlation is less strong than that with number of emails. The
developer runs into a standard correlation vs. causality problem
here, since AppModel also reports that memory size and CPU speed

are correlated with one-another (intuitively a machine with a lot
of memory most likely has faster CPUs as well). It is up to the
developer to interpret causality. Most likely the developer would
consider memory size to be more relevant (intuitively startup time
can be reduced if parts of the application code and data reside in
memory). Third, the variance in performance can be large. We will
analyze potential sources of variance in Section 5.3.

At this point the developer could work on reducing the impact of
number of emails on startup time. One option would be to reduce
the number of emails in the inbox by enabling aggressive auto-
archival features. Another would be to introduce a more efficient
email index data structure. Whatever the developer chooses to do,
the main takeaway is that AppModel helped with the understanding
of the tradeoffs experienced in the field.

Note that an IT administrator might ask a similar questions to
AppModel when making an upgrade decision (e.g., to buy more
memory for client machines). The steps involved would be similar,
but the administrators’ computer configuration would have to be
examined in the similarity search step (i.e., the administrator is not
interested in all computers out there, just the ones s/he maintains).

Modeling a multiple-state application: The next scenario is
similar to the previous one, but we will tell the story from the point
of view of a hypothetical IT administrator. The administrator could
asks the question “What happens if I upgrade to the latest release
of an OS?” In particular, the administrator might be interested in

Bin1l s A A
Bin 10 A
Bing
Bin 8 " A4
Bin7 3 ¢
Biné s e * Y
Bin 5 L4 -

Bin4
Bin 3 Y A\

Bin 2 Y Y *
Bin1

Startup time
*
»

]

N A o P iy
"l-%b\ ¥ 5 ‘\bh \QAD' NS A A D ’1—‘76) _’?1 ”:'9';5‘3’

B R . R A R R
g "f’" ’{'QJ o ’\6\ S0 'I-QD. _‘,‘\’Q ‘3’\ ’:6\ ”;’1

Memory Size (MB)

(a) what-if on memory size

b AA AA A
2 Ad AA A
AL ® AA'A
A A
- .
4
P *e *el s
* *s - Y
= * Y ¥ 4 -
v v Y v
v YyoY¥'Y
\ 4 YYYy Y
h
B S R O N A S A o

CPU Speed (GhZ)
(b) what-if on CPU speed

Avg. # emails
(c) what-if on number of emails

Figure 6: Results when modeling an email client’s startup time as function of memory size, processor speed and number of emails
in the folder. Note that, for the purposes of this paper, the startup time has been masked into bins. The bins match across the three
graphs. The 25%, median, and 75% quartile markers are shown. This experiment uses data from 105,821 user sessions.

an application most of the employees use. Say that application is
Microsoft Excel. The administrator wants to minimize client com-
plaints, thus the performance of the application must not degrade
after the upgrade. We model a rather simplistic scenario with three
states to make the steps clear: starting the application, opening a
file, appending more data to it and then saving it.

The instrumentation step is identical to the previous scenario and
the startup state, file open button and file save button have all been
instrumented. Figure 7 shows one of the three correlations for the
three application states from 11,220,340 user sessions, for the save
state only (the other two states have similar trends). We make sev-
eral observations. First, the correlation between OS version and
save time is weak. This is also reflected in the attribute filter tree
itself (not shown), which does not give a high weight to OS ver-
sion. The task of the IT administrator ends here. The upgrade can
go ahead.

Second, the range of latencies might be large, and the developer
might have to get involved to understand why. Although the num-
bers are masked, we can confirm that the 75% quartile latencies are
well in the “normal behavior” range where the user does not per-
ceive any difference. The next two bins have values in the “notice-
ably annoying” range. These annotations are not arbitrary, and the
values are chosen according to studies of human perception while
interacting with computers. For the troubleshooter of performance
bugs, the “noticeably annoying” range includes performance prob-
lems that require fixing. Many of these could be correctness errors
that could benefit from correlation with crash reports [12] and de-
tailed tracing. We discuss this in Section 6.

Other real usage: In addition to the above rather simplistic
cases, many developers and testers in most of our applications are
actively using the measurements to improve performance. Broadly
speaking, there are three kinds of problems being addressed. The
first revolves around understanding how people interact with ap-
plications and then improving usability and testing. For example,
by observing how users interacted with Microsoft Office (the per-
formance signatures capture sequences of button clicks), decisions
were made to change much of the button layout to allow frequent
operations to be done with fewer clicks. This resulted in improved
usability (as measured by user satisfaction surveys). Also, more
testing effort is placed in lab on application interactions that are fre-
quent in the field. The second usage revolves around understanding
performance for emerging platforms, for example 64-bit architec-
tures, multiple cores and solid-state drives. A third usage model is
to help in performance debugging by building models of expected

Bin 10 —~
Bin9 -
Bin 8 4 :
Bin7 + x
Bin6 | i noticeably
ﬂ annoying
Bin5 1 i
Bin4 ‘
i] 3 E normal
Bin3 ¥ :
: behavior
Bin2 1
Bin 1 j i : , ‘
0S1 0S2 0S3 0S4 0S5 0S6

Figure 7: Spreadsheet file save time as a function of the OS
version.

and unexpected variance. All these usage models have justified
non-negligible costs incurred by the infrastructure, as mentioned in
Section 5.4.

5.3 Interpretation and validation

As Figures 6 and 7 show, many times performance can vary sig-
nificantly. A developer is often interested in normal (or expected)
variance vs. unexpected performance variance. The hypothesis of
this sub-section is that AppModel can help the developer interpret
sources of variance. In this section we will also describe some
details on the subtler approaches of using dynamic and static at-
tributes as first mentioned in Section 3.3.2.

Because of the data collection limitations mentioned in Sec-
tion 4.1 we can only use the code editing and debugging program
(in-the-lab test). We have data from several hundred tests of it run-
ning in isolation, i.e., there is no resource sharing by other fore-
ground applications. These tests are part of a real nightly regression
suite. Figure 8 shows the average, min and max latencies from run-
ning each test four times. We observe that even in this controlled
environment, performance might vary by two orders of magnitude.
We do not attempt to provide an exhaustive list of performance sig-
natures for expected performance variance. However, we list sev-
eral common ones we found from this experience. Note the discus-
sion in Section 3.5 on root cause analysis limitations. AppModel
provides performance counters values that are worth investigating,
but a human must interpret their values.

1E+1

_
m
+

o

A
m
AR

min(norm) avg(norm) max(norm)

Normalized performance

_.
m
N

o

200 400 600 800
TestID

Figure 8: Inherent variance in application performance. The
y-axis is in log scale. + indicates the maximum latency seen,
— indicates the minimum latency seen, whereas . indicates the
average latency. All numbers are normalized to the average.

Variance associated with memory and storage sub-system:
The two main sources of variance from the above tests came from
the CPU and disk resources. Because disks are mechanical devices,
the positioning latency of the disk head can take from O to several
milliseconds. The exact latency depends on the previous position
of the disk head. In general, disk access times are expected to vary
by tens of milliseconds and our infrastructure considers this to be
normal behavior. In addition, depending on the contents of the stor-
age buffer cache, sometimes requests hit in the cache, sometimes
they miss. The other layers in the memory hierarchy (e.g., L2 and
L1 CPU caches) influence performance as well. The interpretation
step performs a delta analysis among cases of good and bad perfor-
mance and results in a visualization as first shown in Section 3.4.

This next set of experiments are performed using the data from
the synthetic application described in Section 4.2. We ran the syn-
thetic application continuously for a week on Machine 1 and Ma-
chine 2 to understand other sources of performance variance.

Variance associated with OS background activities: We ob-
served variance in latency or throughput may result from back-
ground activities. This may be the OS performing maintenance,
such as checkpointing, lazy write-backs, or defragmentation. In
these cases, we observed that performance counters show resources
being used by the kernel. There are also user-level maintenance
activities, such as garbage collection done by the runtime envi-
ronment or a virus scanner performing its duties. AppModel’s in-
terpretation step gets a delta of the counters for the runtime envi-
ronment (that describe the rate of garbage collection, among other
things). The virus scanner is just another process so its process
counters will show high activity — disk or CPU — when the scan-
ner is active.

A closer look at variance associated with resource sharing:
Here we analyze deeper sources of variance when an application
contends for resources with other foreground applications. We run
three scenarios on two different computers (the computers’ con-
figurations can be found in Table 2). We only show one graph, a
case with a mix of accurate and inaccurate predictions; the other
graphs have accurate predictions. First, we run the application
on each computer with the disk-intensive state only. AppModel
builds an attribute filter using the data from one of the comput-
ers and predicts the relevant attributes of the second computer’s
run. Second, we run one instance of the application with the disk-
intensive state only. We then start a CPU-intensive application on

100 ‘ ‘ — — ‘
12 A\ -+
90 | Run — 1;) A 1]
Prediction —]
80 | ¢ 1]
2 4
70 - 0 : 1

L L
560 565 370 575 580{585 590

N W b U1 O
O O O O ©
T T

il

Application throughput (MB/s)

0 100 200 300 400 500 600 700 800
Time interval

° o

Figure 9: Cases of accurate and inaccurate predictions.

the same computer to understand the performance signature of re-
source sharing among unrelated resources. We observe that the
attribute filter successfully correlates application throughput with
the disk attributes and in the second case does not get perturbed by
the CPU-bound application. Intuitively, this is expected, since the
application is disk-bound and CPU sharing should not significantly
affect it. For this what-if question, the distance metric depends
only on the disk score and equals D((C;), (C;)) = diskscore((C;)) —
diskscore((C;)) = 0.4. The distance is small, hence it is meaningful
to compare the performance between the two computers.

Third, we repeat the second experiment, but this time the two
instances both run the disk-intensive state (thus heavily contend-
ing for the disk). AppModel builds an attribute filter using data
from the single instance run, and predicts the relevant attributes for
the run with contention. We make several observations: First, the
attribute filter successfully correlates application throughput with
the static disk performance counters in both runs. Second, Fig-
ure 9 shows that there are cases when the attribute filter does not
correctly predict the second run’s performance, i.e., the dynamic at-
tributes change between the two runs. This is OK. As mentioned in
Section 3.3.2, the dynamic attributes might be different across runs.
What is important for the similarity search is that, for both runs, the
correct (disk-related) static attributes are chosen. Then, the inter-
pretation phase exposes the contention (to the human) through delta
analysis of the dynamic attributes. This analysis shows that the pro-
cess “disk utilization” attribute is smaller in the second run, while
“total disk utilization” remains the same. This indicates contention
of the disk by another process.

In summary, performance variance depends on resource con-
tention. The signature for a resource under contention contains a
high total resource utilization and only a fraction of it is used by
the application under consideration. AppModel does not do deep
characterization of contention; when performance is bad it merely
answers the binary question “was there contention of resources or
not?” Periods of contention are not flagged as anomalous.

Variance associated with external dependencies: From a test
that exercised the network bound state of the synthetic application
(writing on a network share, instead of the local disk) we observed
that performance on a single computer might depend on external
resources on different computers (e.g., email stored on a server).
In these cases, AppModel gets a delta of the rate of bytes being
sent on the network interface and reports the network resource as
needing most attention.

Experiment | Runtime | Std. Dev.
w/0 counters 61.6s 2.58
+ counters (137) | 63.5s 2.24
+ counters (18) 60.7 s 2.27

Table 3: Overhead for producing and collecting performance
signatures. The average and std. dev. over 40 runs is reported.

5.4 Cost and efficiency

How hard is it to build and maintain the infrastructure?:
The infrastructure used to instrument applications, collect the data
and make it queryable has taken time to build and is still ongo-
ing in that new application states are being continuously instru-
mented. As costs change, we are only able to provide rough num-
bers for the costs involved. The hardware costs (servers to collect
and store the measurements with standard load balancing front-
ends and database back-ends) currently range from several thou-
sand to 100,000+ US dollars, depending on the application (each
application maintains its own set of servers). Tens of people main-
tain the servers and provide training to developers for adding new
instrumentation points and interpreting them. Most of our applica-
tions have been instrumented over a period of more than 3 years.

Does the monitoring degrade performance?: For users that
have opted-in to provide the data (in-the-wild), the instrumentation
is on at all times with no negative perceived performance reported
from the field. Nonetheless, we provide some theoretical overheads
here for completion, using the synthetic application. We set the
frequency of state changes to be once every 3 seconds (in prac-
tice users click less frequently for real applications). We ran the
application described in Section 4.2 in four different setups. The
resulting overheads are given in Table 3. In the first experiment,
we turned off all monitoring and event generation. For the second
run, we collected a set of 132 OS and 5 application metrics. This
case resulted in a 3% runtime overhead. The third run is described
in the next sub-section. When collecting all 137 metrics, the raw
data consumed less than 20MB per day.

It is conceivable that the monitoring overhead might increase
with future releases. When that happens, we could benefit from
using existing optimization mechanisms to further reduce monitor-
ing overhead, such as the ones presented by Bhatia et al. [4], Ver-
bowski et al. [28] (e.g., on collecting metric deltas) and Kiciman
et al. [16] (e.g., collect different sets of performance metrics from
different users).

Details on attribute filter efficiency: Not all attributes collected
are used for every what-if question. For example, we created an at-
tribute filter used to predict the relevant attributes for the synthetic
application’s disk-intensive state. This filter was created in under
2 minutes using 40,000 data points in training mode (on the first
computer) and can subsequently make 4,000 attribute filter predic-
tions/second. The filter is small in size, less than 110kB . Figure 10
shows its accuracy as a function of attribute filter tree depth. We
observe that there is no gain in accuracy for depths larger than 8,
a point where the tree only contains 18 attributes. When restrict-
ing data collection to these attributes in a third run, we measured a
negligible monitoring overhead as shown in the last row of Table 3.

All the algorithms we described in this paper are embarrassingly
parallel. For example, different applications have different unre-
lated models. Attribute filters from different users and data collec-
tion and processing can all be done in parallel.

Self-prediction ——
Cross-prediction, case 1 ------—
Cross-prediction, case 2 - |
Cross-prediction, case 3
Local prediction, case 1 ----
Local prediction, case 2 ---- |
Local prediction, case 3 ----
Local prediction, case 4 —--

Root of Mean Square Error

15 20 25
Tree depth

Figure 10: Attribute filter prediction error. Self-prediction
means the model was used to predict its own training data.
Cross-predictions are predictions made for 3 runs on the sec-
ond computer. Local predictions are predictions for 4 runs on
the same computer but on different test data. RMS values have
little absolute meaning, but are used here to indicate when pre-
diction stability is reached and the point of diminished returns.

6. ONGOING WORK AND DISCUSSION

More detailed tracing: There are several avenues for future
work. First, performance reports could be correlated with crash
reports, e.g., like the ones collected by Windows [12]. This would
help understand the relationship between program correctness and
good performance. Second, when latency is entering the “notice-
ably annoying” category as shown in Figure 7, detailed system call
and kernel traces could be transmitted to the developer. The mech-
anism to collect these traces is part of Windows [19].

What other applications could be modeled?: We hypothesize
on how other popular applications could be modeled, by discussing
a few cases. All these hypotheses need verifying. A graphics suite
such as the Adobe Creative Suite has many similarities to the in-
teractive applications we used. Each action performed on an ob-
ject (such as color changes, rasterizing, blurring) can be instru-
mented, together with characteristics of the workload (e.g., file size
and resolution determines blurring time). It might also be possible
to model popular games, such as Quake and Halo, as a sequence
of states. Certainly, rendering time could be modeled as a func-
tion of the hardware configuration. Response time could be mod-
eled as a function of the scene’s complexity. Web 2.0 applications
(the client side) have similarities to the interactive applications we
used, in that several of the (often JavaScript) functions run on thou-
sands of computers. The instrumentation mechanism might look
like AjaxScope [16], but the modeling might be similar to ours.

Should end-users bother?: When we embarked on this project,
exposing the performance models to end-users was high on our list.
We had two hypotheses. First, we thought that end-users would
want a tool that helped them with upgrade questions. Second, we
thought that end-users might benefit from a “Red button” which
they could press each time an application is perceived to be slow,
an idea first explored by Basu et al. [3]. We have not done a for-
mal user study, but from interactions with users we realized both
ideas were implausible. End-users will usually buy the best device
they can afford and they do not want to tinker with its hardware
(e.g., buying faster disks or adding CPUs). From simple experi-

ments with a “Red button” we implemented we also realized that
asking users to make extra clicks does not add to a positive usage
experience, because they do not get an immediate reward for it —
fixing a performance problem might take time.

7. SUMMARY

AppModel is a step towards modeling popular, complex client
applications. This novel modeling framework relies on global ag-
gregation of performance signatures collected from real application
deployments. It does not require deep instrumentation of the oper-
ating system or application and it does not need a priori knowl-
edge on how the application should behave. AppModel is designed
to be versatile. It could help developers expand their testing cover-
age, to improve program usability by providing them with informa-
tion on how an application is behaving in the field, and to annotate
previously-seen performance anomalies. AppModel has the poten-
tial to help IT administrators, too, in understanding consequences
of an upgrade decision.

8. ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Murray

Woodside for helping us improve this paper. We thank Paul Barham,

Tim Harris, Rebecca Isaacs, Joe Hellerstein, Joseph Joy, Dongmei
Zhang for valuable discussions on this project. This work would
not have been possible without the efforts of the Microsoft Cus-
tomer Experience Improvement team and Microsoft Office, Win-
dows, Visual Studio and Media Player teams.

9 REFERENCES

] http://research.microsoft.com/~etheres/research/
Sigmetrics2010Survey.xls.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In ACM Symposium on Operating
System Principles, pages 74-89, 2003.

[3] S. Basu, J. Dunagan, and G. Smith. Why did my PC
suddenly slow down? In SYSML’07: Proceedings of the 2nd
USENIX workshop on tackling computer systems problems
with machine learning techniques, pages 1-6, 2007.

[4] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. L. Peterson.
Lightweight, high-resolution monitoring for troubleshooting
production systems. In Symposium on Opearting Systems
Design and Implementation, pages 103-116, 2008.

[5] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen. Fingerprinting the datacenter: Automated
classification of performance crises. In Eurosys, Paris,
France, 2010.

[6] C. Borgelt. DTX - decision tree induction and execution.
http://www.borgelt.net/dtree.html.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and regression trees. Chapman and Hall/CRC,
1998.

[8] M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox,
and E. Brewer. Path-based failure and evolution
management. In Symposium on Networked Systems Design
and Implementation, pages 309-322, 2004.

[9] I Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating instrumentation data to system states:
a building block for automated diagnosis and control. In
Symposium on Operating Systems Design and
Implementation, pages 231-244, 2004.

[10] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox. Capturing, indexing clustering and retreiving system
history. In ACM Symposium on Operating Systems
Principles, 2005.

[11] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and
W. Zwaenepoel. Staged deployment in Mirage, an integrated
software upgrade testing and distribution system. In ACM
Symposium on Operating Systems Principles, pages
221-236, 2007.

[12] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,

V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (very) large: ten years of implementation
and experience. In Proceedings of the Symposium on
Operating systems principles, pages 103-116, 2009.

[13] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan,
D. E. Porter, D. L. Chen, and E. Witchel. Improved error
reporting for software that uses black-box components.
SIGPLAN Not., 42(6):101-111, 2007.

[14] Q. He, C. Dovrolis, and M. Ammar. On the predictability of
large transfer TCP throughput. In ACM SIGCOMM
Conference, pages 145-156, 2005.

[15] R. Jain. The art of computer systems performance analysis.
John Wiley & Sons, 1991.

[16] E. Kiciman and B. Livshits. AjaxScope: a platform for
remotely monitoring the client-side behavior of web 2.0
applications. In ACM Symposium on Operating Systems
Principles, pages 17-30, 2007.

[17] E.Lazowska, J. Zahorjan, S. Graham, and K. Sevcik.
Quantitative system performance: computer system analysis
using queuing network models. Prentice Hall, 1984.

[18] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. Zheng, and
G. R. Ganger. Modeling the relative fitness of storage. In
ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 37-48, 2007.

[19] Microsoft. Event tracing. http://msdn.microsoft.com/.

[20] Microsoft. Microsoft customer experience improvement
program. http://www.microsoft.com/products/ceip.

[21] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[22] S. E. Perl and W. E. Weihl. Performance assertion checking.
In ACM Symposium on Operating System Principles, pages
134-145, 1993.

[23] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. In Symposium on Networked Systems
Design and Implementation, pages 115-128, 2006.

[24] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The case for
application-specific benchmarking. In HOTOS ’99:
Proceedings of the The Seventh Workshop on Hot Topics in
Operating Systems, 1999.

[25] K. Shen, M. Zhong, and C. Li. I/O system performance
debugging using model-driven anomaly characterization. In
Conference on File and Storage Technologies, pages
309-322, 2005.

[26] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services. In
Symposium on Networked Systems Design and
Implementation, 2005.

[27] E. Thereska and G. R. Ganger. IRONModel: robust
performance models in the wild. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, 2008.

[28] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,

J. Lee, Y.-M. Wang, and R. Roussev. Flight data recorder:
monitoring persistent-state interactions to improve systems
management. In Symposium on Operating Systems Design
and Implementation, pages 117-130, 2006.

[29] H.J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with
PeerPressure. In Symposium on Opearting Systems Design
and Implementation, 2004.

[30] Wikipedia. Windows system assessment tool.
http://en.wikipedia.org/wiki/Windows_System_
Assessment_Tool.

